PEmicro logo
Cart New Account Login

Logo image
HomeAbout usProductsSupportForumsBlogCustomer Service


by Steve McGrath


PEmicro has added support for its Multilink and Cyclone tools to Renesas' e² studio IDE. e² studio is an Eclipse-based IDE created by Renesas which supports development and debugging of code on Renesas' Synergy and RA devices. This blog demonstrates the procedures needed to install and then configure PEMicro Multilink and Cyclone debug support in Renesas e2Studio.

Read more...


by Steven McGrath


This blog post was updated May 18, 2023 to include Renesas DLM Key Injection and User Key support. Other updates include running an application after DLM programming and updated flowchart and images.

PEmicro has added production programming support for the Renesas RA family Device Lifecycle Management (DLM) and TrustZone boundary settings to the Cyclone FX programmer. Device Lifecycle Management and TrustZone boundary settings are used to secure access to the on-chip Flash and RAM both from external debug/bootloader access as well as untrusted code running internal to the device on devices with DLM Technology and TrustZone support (such as Cortex-M33 devices). Configuration and programming of these settings are made simple with PEmicro's stand alone programmers.

Read more...


by Steve McGrath


PEmicro's development and production tools now support MSPM0L and MSPM0G ARM Cortex-M0+ MCUs from Texas Instruments. ARM Cortex-M0+ MCUs are highly scalable and deliver the sensing and processing features that developers are seeking.

Read more...


by Keith McNeil


PEmicro's development and production tools now support TLE9844 (Cortex M0) and TLE9879 (Cortex M3) devices from Infineon. These MOTIX™ Embedded Power ICs are highly integrated products that save space and energy, improve the overall system reliability through advanced diagnosis features and reduce the overall cost due to a minimum number of components. They fit with a range of motor control applications where a small package form factor and a minimum number of external components are essential, such as window lift, sunroof, wiper, auxiliary pumps, HVAC fans and engine cooling fan applications.

Read more...


by Keith McNeil and Kevin Perreault


PEmicro has announced the launch of PEcloud, a cutting-edge platform that offers unparalleled control and visibility into users' production programming Jobs which run worldwide on Cyclone programmers.

Users upload programming Jobs to PEcloud, which provides an easy-to-use online interface to manage workflow. Jobs are a new type of programming image that use a secure connection from the Cyclone to the PEcloud platform to provide additional control, features, and visibility to the user. PEcloud users manage these Jobs in their own Virtual Factories (VFs). Each VF space can be organized as the user sees fit in order to connect specific Cyclones, programming Jobs, and PEcloud users together logistically. 

PEcloud then allows for unprecedented visibility of, and control over, programming operations. Jobs being used in manufacturing can be paused, deleted, or updated. Programming logs for Jobs can be viewed, and unique device and dynamic programming data can be inspected. Serial numbers, programming count restrictions, and shared dynamic data are managed across all Cyclones running a Job. This system reduces distribution overhead and minimizes the risk of errors while increasing security.

Read more...


by Julie Perreault


PEmicro has launched PEcloud, a cloud-based production programming Platform for the management of remote production.  Along with PEcloud, an updated version of the Image Creation utility has been released that now has the ability to generate PEcloud connected programming images (Jobs).

PEcloud gives the user a secure delivery method to send programming images to remote Cyclones, enhanced control over their IP being programmed, as well as insight into the production programming process.  It is designed with security in mind, so no matter where in the world the production programming is done, from generation of the programming image on the PC to deployment to PEcloud to downloading onto the Cyclone Production Programmer, customer Firmware IP remains safe. 

Read more...


by Julie Perreault


PEmicro has launched PEcloud, a cloud-based production programming Platform, along with an updated version of the Cyclone Image Creation utility.  In addition to Stand-Alone Programming (SAP) images, the Image creation utility now has the ability to generate Cloud-Connected programming images (Jobs).   

SAP images and Job Images have a lot in common in terms of their base functionality, but the cloud-connected programming Jobs offer some really expanded capabilities that sets them apart. 

Read more...


by Julie Perreault


PEmicro Cyclone programmers are sophisticated production programming tools that are designed to operate in StandAlone mode.  PEmicro’s Image Creation Utility generates these StandAlone programming images. They might combine an algorithm, binaries, and a programming script which could include  erase, program and verify of their binaries, as well as more complicated scripts along with other features like serial numbers, dynamic data, or running test commands and saving data for programming.  

Users often save a configuration file (.CFG) so they can later regenerate a new SAP image from the same configuration and reference files.  However, if any of the files have changed or been lost, like the binary file or the serial file, then it is not possible to recreate and image the programs with exactly the same data. The latest version of Image Creation Utility addresses this by adding the ability to build a SAP object file (.SAPOBJ). 


Read more...


by Keith McNeil and Johnny Ng


Note: This blog post was updated on 05 April 2023 to reflect new support for the MindMotion MM32F Series.

PEmicro's development and production tools now support MindMotion's MM32 SPIN and MM32F family of microcontrollers. MindMotion products and solutions are widely used in industrial control systems, smart homes, wearable applications, automotive electronics, instrumentations, and many other fields. MM32SPIN is designed for motor drive and control.  MM32F is designed for the general purpose and high performance market.

Read more...


by Steve McGrath


PEmicro's development and production tools now support Infineon's 32-bit XMC7000 Industrial Microcontrollers (Arm® Cortex®-M7). The XMC7000 architecture is built on a low-power 40-nm process technology and the MCUs offer best-in-class compute performance addressing high-end industrial applications.

Read more...


by Takao Yamada



 At Embedded World 2023 March 14th to the 16th a PEmicro x GigaDevice collaboration brings you a
Cyclone FX ARM standalone demo of the GD32350R-EVAL board. Please visit Gigadevice's booth at Hall 3A Booth 527 and experiment with the Cyclone's touch screen and START button.

Read more...


by Keith McNeil


PEmicro will show its latest debug authorization technologies at Embedded World 2023, March 14-16 -- Hall 4, Booth 648.

Silicon Manufacturers like NXP, ST, and Renesas are placing security aspects at the forefront, including a secure debug connection. 

With tools like its Secure Boot Management Utility (for NXP's i.MX and LPC devices), PEmicro has been taking the lead in creating solutions that go above and beyond those provided by the manufacturer in order to make the development process as hassle-free and error-proof as possible. 

Read more...


by Keith McNeil


See PEmicro demonstrate RISC-V readiness at Embedded World 2023, March 14-16 -- Hall 4, Booth 648.

The RISC-V architecture, which offers some similarities to the ARM architecture but with a different set of advantages and disadvantages, is positioned to become a bigger part of the marketplace in the coming years. PEmicro is finalizing support for RISC-V devices, including the GD32VF103 from manufacturer GigaDevices. 

Users with plans to work with RISC-V devices are welcome to send us questions and concerns about specific parts they would be interested in programming. 



by Keith McNeil


Watch PEmicro demonstrate a first-look into this new feature at Embedded World 2023, March 14-16 -- Hall 4, Booth 648.

Check for updates soon for when this will be publicly released in the cyclone software installer.

PEmicro's Cyclone programmers will soon support advanced control and automation features in both Linux and macOS. This support extends to all the three components of the Cyclone Control Suite - the Control GUI, Control Console, and Control SDK - which gives the user a great deal of flexibility when planning a solution.  

Read more...


by Steve McGrath


PEmicro's development and production tools now support STMicroelectronics' STM32H5 microcontrollers based on ARM Cortex-M33.  The H5 devices are intended to offer a compelling combination of performance and security at a reasonable price.

Read more...


by Steve McGrath


PEmicro's development and production tools now support Infineon's 32-bit TRAVEO™ T2G ARM® Cortex® devices. TRAVEO T2G microcontrollers are based on ARM Cortex-M4 (Single core) / M7 (Single core/Dual core) and deliver high-performance, enhanced human-machine interfaces, high security, and advanced networking protocols tailored for a broad range of automotive applications such as electrification, body control modules, gateway, and infotainment applications.

Read more...


by Steve McGrath


Historically, PEmicro's PROG has limited the user to specifying one object file at a time to be programmed. But users occasionally encounter situations where they would want to program their bootloader, application, and some additional security settings, all at the same time. Such a configuration was possible using PROG, but quite cumbersome. So PEmicro has implemented a solution that allows programming of multiple object files using a single “PM” and “VM”. This solution is the new “QO” (Queue Object Data) command, which replaces the legacy "SS" command.

Read more...


by Keith McNeil


PEmicro's development and production tools now support Flagchip as Flagship devices. The FC4150 device features a Cortex-M4 with FPU/DSP, 8K Cache, with 8MPU region. The Feature List available on the device webpage includes many impressive additional features, including support for 3xCAN with FD and 3xCAN without FD.

PEmicro's Cyclone programmers can be used for secure production programming of FC4150 devices, including control and automation. In addition, Multilink debug probes with PROGACMP programmer, and GDB Server Eclipse IDE plug-in are ideally suited for the development process.

Read more...


by Johnny Ng, Keith McNeil


PEmicro is pleased to announce that our popular Multilink and Cyclone tools are now supported in JetBrains' CLion IDE. CLion is a smart, cross-platform IDE for C and C++ that includes code assistance and generation, on the fly code analysis, safe refactoring, and an integrated debugger with many powerful features. PEmicro's plugin allows the user to debug a broad range of ARM devices from many silicon manufacturers. For the complete list of ARM devices that PEMicro supports, please visit the following page: http://www.pemicro.com/arm/.

Below we have included a setup guide to get users up and running with PEmicro tools in CLion 2022.3.1 Build #CL-223.8214.51 running on Windows 10 Pro x64.

Read more...


by Steve McGrath


Simplicity Studio 4 and 5 are Eclipse-based IDEs by Silicon Labs which support development and debugging of code on EFM32 devices. PEmicro provides hardware debug probes which provide sophisticated debug of these same EFM32 devices. This blog demonstrates the three steps needed to install and configure PEmicro Multilink and Cyclone debug support in Simplicity Studio. 

UPDATE: All following steps now apply to Simplicity Studio 5

Read more...


by Keith McNeil


PEmicro is attending ST Technology Tour 2022 - Burlington on  Weds., November 2. Our demonstration will use a Cyclone FX to program and run a series of custom test applications, query a remote server for data and then use the data retrieved to perform key Injection on the target,  and program dynamic data.

We'll have a booth running this demo at certain points during the day:

  • Breakfast demo: 9 to10:30am 
  • Lunch demo: 11:45am to 1:30pm 
  • Afternoon demo: 3 to 4:30pm

Please come visit us!

Read more...


by Keith McNeil


PEmicro's development and production tools now support indie Semiconductors' iND832xx, ind87300 and iND83208/iND83207 devices. The iND832xx family consists of two automotive-grade LED-lighting ICs that integrate a powerful 32-bit Arm® Cortex® M0 processor together with everything necessary to implement an interior lighting system. The ICs include a flexible power management system and many cutting-edge features.

PEmicro's Cyclone programmers can be used for secure production programming of iND832xx devices, including control and automation. In addition, Multilink debug probes with PROGACMP programmer, and GDB Server Eclipse IDE plug-in are ideally suited for the development process.

Read more...


by Keith McNeil


PEmicro is attending NXP Technology Days 2022 - Detroit on Tues., October 18 and Weds., October 19.  We'll be demonstrating a possible upcoming Cyclone FX feature - the concept that the Cyclone could query a server for dynamic data including private and public keys, install a key and run a test application on the target device, and then if testing is successful, program the final image onto the target. We'll have a booth running this demo during lunch and dinner Tech Labs - please come visit us!

Read more...


by Keith McNeil


Raspberry Pi's RP2040 device is now supported by PEmicro's development and production tools. Raspberry Pi designed the RP2040 to be able to speak to almost any external device. It is a high-performance, low-cost solution with six independent banks of RAM and a fully connected switch.

PEmicro's Multilink debug probes with PROGACMP programmer, and GDB Server Eclipse IDE plug-in are ideally suited for the development process. In addition, Cyclone programmers can be used for secure production programming of this Raspberry Pi device, including control and automation..

Read more...


by Keith McNeil


Automation features have always been central to PEmicro's Cyclone programmers because of the customization and control they give users over the crucial production programming process. The right features implemented well can result in significant savings of time and money.

PEmicro now makes all of our advanced control/automation features standard with every Cyclone. Cyclone LC users (PEmicro part#s Cylcone-LC-UNIV and Cyclone-LC-ARM) can update their Cyclone software now to immediately add these powerful features at no additional cost. The updated software can be downloaded here: Cyclone LC and Cyclone FX Installation Software.

Read more...


by Keith McNeil


PEmicro's development and production tools now support Geehy Semiconductors' APM32F0, APM32F00, APM32F1, APM32E1, APM32S1 and APM32F4 devices. Visit Geehy's product page website for more detailed information on each families capabilities and features.

PEmicro's Cyclone programmers can be used for secure production programming of APM32F0, APM32F00, APM32F1, APM32E1, APM32S1 and APM32F4 devices, including control and automation. In addition, Multilink debug probes with PROGACMP programmer, and GDB Server Eclipse IDE plug-in are ideally suited for the development process.

Read more...


by Johnny Ng


PEmicro has added 64-bit Windows libraries to the Cyclone Control Suite. Now available in the Cyclone LC and Cyclone FX Installation Software.

The 32-bit library and other deliverables are located in: 

C:\PEMicro\cyclone\cycloneControl\controlsdk\deploy\win32

The 64-bit library and other deliverables are located in 

C:\PEMicro\cyclone\cycloneControl\controlsdk\deploy\win64

In addition, the python example has been updated to automatically load the appropriate DLL depending on your platform. Please note that the CycloneControlGUI and CycloneControlConsole applications remain 32-bit.

Please contact technical-info@pemicro.com if you have any questions about our 64 bit support.




by Keith McNeil


Qorvo's PAC52xx and PAC55xx devices are now supported by PEmicro's development and production tools. These ar part of Qorvo's broad portfolio of full-featured Power Application Controller® (PAC) products that are highly optimized for controlling and powering next generation smart energy appliances, devices, and equipment.

PEmicro's Multilink debug probes with PROGACMP programmer, and GDB Server Eclipse IDE plug-in are ideally suited for the development process. In addition, Cyclone programmers can be used for secure production programming of these Qorvo devices, including control and automation.

Read more...


by Edison Tam


PEmicro's Secure Boot Utility is now updated to support NXP's LPC55Sxx processors. The LPC55Sxx secure boot feature is a key component in protecting embedded devices as security threats increase both in volume and complexity. PEmicro’s Secure Boot Utility is a graphical user interface which configures Secure Boot for applications running on LPC55Sxx devices and sets device security features to inhibit copying or misuse.  Functionality includes signing applications, generating keys and certificates, setting security options, and running a security analysis of all settings.

The Secure Boot Utility automates building secure boot binary files and is used in the process of generating encrypted secure boot programming images for manufacturing.  The goal is to make sure the user's application data is secure in both the manufacturing stage and when devices are deployed in the field. The tool includes a security analyzer which grades the user's security choices based on how secure it will leave the device after programming.

The Secure Boot Utility is integrated into the Cyclone production programming software and included with the PROGARM programming software.

Read more...


by Steve McGrath


PEmicro's development and production tools now support ZHIXIN Semi's Z20K11xM and Z20K14xM devices. ZHIXIN Semi produces high-reliability controllers and processor chips for automotive systems.

PEmicro's Cyclone programmers can be used for secure production programming of Z20K11xM & Z20K14xM  devices, including control and automation. In addition, Multilink debug probes with PROGACMP programmer, and GDB Server Eclipse IDE plug-in are ideally suited for the development process.

Read more...


by Johnny Ng


PEmicro supports external flash connected to an MCU via the SPI and Address/Data bus interfaces. When performing this type of programming, the algorithm needs to be set up specifically for our programmers to be able to communicate with the flash via the MCU. What must be configured depends on which external bus interface has been chosen for the connection. When using the Address/Data bus, the user will need to configure the external address, data, and bus control pins of the MCU. In the case of the SPI bus, the user will need to configure GPIO pins connected to the external SPI device properly. The modifications are made in the header of the algorithm file. PEmicro's PROGACMP software, as of version 8.84, has an SPI Diagnostic mode that provides the user with a new method to easily test the GPIO configuration in order to help troubleshoot programming issues.

Read more...


by Keith McNeil


The process of setting up Cyclone programmers to perform production programming at a local or remote facility is simple and straightforward. PEmicro's Cyclones support programming of STMicroelectronics' popular STM32 and Bluetooth Low-Energy (BlueNRG) devices, as well as the SPC5 automotive and STM8 8-bit families.

In addition, Cyclone programmers leverage PEmicro's ProCryption Security to use industry-standard RSA/AES cryptography to safeguard programming images containing valuable IP. The IP owner also gains added control over factors like when and how many devices can be programmed, and how many errors are allowed.

This article will provide an overview of Cyclone programming - what the various components are and how they interact - and then explore the security aspect of the production programming process, in order to show that IP security does not need to be unduly complicated or expensive to be effective. 

Read more...


by Edison Tam


The following is an errata sheet which concerns a potential issue with some versions of USB Multilink Universal Rev. E, including how to determine if the user has the affected product, the specifics of the issue at hand, and what the current solutions are. 

Summary: Reset signal (pin 4) on Port C does not toggle. This can potentially cause debug entry problems for the following NXP processor families: HCS08, HC(S)12(X), S12Z, ColdFire+ V1, and ColdFire V1. However, many of these processors do not require the reset signal for debugging and will not be affected by this errata. The HC(S)12(X) and S12Z processors are expected to be the most impacted.

Affected products: This errata affects part number USB-ML-UNIVERSAL Rev E with date code 1121.

Read more...


by Steve McGrath


PEmicro has improved user reset capabilities after a flash programming sequence. With the updated implementation of the ‘GO’ command (available with most ARM Cortex processors) in both PEmicro's Cyclone and PROGACMP (v8.76 and up) software-based programming solutions, the user is able to specify the use of a software or hardware reset to reset the MCU. 

Read more...


by Keith McNeil


PEmicro's Multilink Universal (part# USB-ML-UNIVERSAL) recently changed from Rev D. to Rev. E. As part of this update, Multilink Universal Rev. E or later will require an adapter when communicating with NXP's RS08 devices.

The RS08 connection otherwise remains the same, and uses the same 6-pin pinout described in the Multilink Universal technical summary.

Read more...


by Steve McGrath


It is crucial to be able to prevent access by third parties to on-chip flash memory. Renesas RA and Synergy devices offer several means of security, one of which is called ID Code protection. After the MCU starts up in boot mode, ID authentication is performed when a host such as a PC is connected, in order to prevent unauthorized access. PEmicro's tools now allow users to take advantage of ID Code protection within the OCD/Serial Programmer ID Setting Register (OSIS) of supported Renesas ARM processors.

Read more...


by Keith McNeil


PEmicro's Cyclone programmers and Multilink debug probes now support Nordic Semiconductors' nRF53 devices. These are low-energy, short-range devices capable of both perfomance and efficiency.

The nRF5340 SoC, for example, is the world’s first wireless SoC with two Arm® Cortex®-M33 processors. It's an excellent choice for LE Audio, professional lighting, advanced wearables, and other complex IoT applications, due to those two flexible processors, its advanced feature set, and an operating temp up to 105 °C.

It also includes Bluetooth 5.3 SoC which supports Bluetooth LE, Bluetooth mesh, NFC, Thread and Zigbee.



by Laith Shamieh


PEmicro has added "Cyclone Programming Control Port" functionality to the 10-pin expansion I/O interface on the Cyclone allowing external signal control of programming operations. The Cyclone Programming Control Port may be used to launch programming as well as read the IDLE/BUSY state of the cyclone and the SUCCESS/ERROR result of the last programming operation. The port I/O operates from 1.6v-5.5v. These signals can be interfaced to by ATE (Automated Test Equipment), external buttons / LEDs, microcontrollers, etc. 

Read more...


by Julie Perreault


Note: This article was updated on August 3. 2022 to reflect updates to the Cyclone programmer feature sets.

As part of the production programming process, Cyclone FX programmers have the ability to program and run a series of custom test applications in the target processor before final programming is allowed to occur. These custom test applications are written by the end user and include any functionality desired including test and calibration of the target system. The custom test applications indicate to the Cyclone through the debug interface whether they were successful or not and also optionally return generated data to the Cyclone for use later in the programming process. If all of the custom test applications pass, the final application is programmed into the target. This advanced control/automation feature is exclusive to the Cyclone FX programmer model. 

Read more...


by Keith McNeil


PEmicro's tools now support Nuvoton's NuMicro® M45x devices. Nuvoton M45x devices are innovative ARM processors designed for a variety of applications, including Industrial Automation, PLCs, Inverters, Home Automation, Portable Data Collector, USB Accessories, Smart Card Readers, and Motor Control.

Read more...


by Keith McNeil


Renesas' SmartBond TINY™ DA14531 is now supported by PEmicro's popular Cyclone and Multilink tools. The SmartBond DA14531 device is based on the world’s smallest and lowest power Bluetooth Low Energy 5.1 SoC. It's an innovative ARM processor, suitable for battery-powered wearable devices, that can provide significant savings in development cost and time-to-market.

Read more...


by Steve McGrath


Cyclone and Multilink products from PEmicro now support Renesas’ RA device family. RA processors provide stronger embedded security, superior CoreMark® performance and ultra-low power operation.

Read more...


by Keith McNeil


PEmicro's Cyclone in-system programmers and Multilink debug probes now support programming of the Renesas Synergy™  S1, S3, S5 and S7 series of MCUs. Renesas Synergy Platform MCUs offer a variety of performance and feature sets and are ideal for IoT products and mobile devices.  The S5 series focuses on high integration and the S7 series focuses on high performance.

Read more...


by Keith McNeil


PEmicro's website and our shipped software are not affected by the recent Apache log4j vulnerability. Users with additional questions or concerns may contact us at: technical-info (at) pemicro.com



by Zahar Raskin


PEmicro, an NXP® Semiconductors Gold Partner, has announced a range of development tool support for the S32K3 Automotive MCU family for next generation body, zone, and domain control applications. Tightly integrated with NXP’s evaluation boards and S32 Design Studio IDE, PEmicro tools provide a powerful platform for the evaluation, development, and production programming stages of the product cycle.

Read more...


by Mika Ichiki-Welches


NXP has released a new, scalable S32K3xx device family, featuring an advanced secure debug mechanism, based on secret keys, to protect user applications throughout the development phase. PEmicro debug tools, which are deeply integrated with NXP’s S32 Design Studio and other IDEs, include Python scripts to enable and use the secure debug feature.

Read more...


by Steve McGrath


PEmicro has introduced the ability to update the current flash memory of STMicroelectronics' STM32WB Wireless MCUs with wireless stack information. Deleting current wireless stacks allows for more available flash memory in the processor, while upgrading wireless stacks allows the processor to perform desired wireless functions out of the otherwise inaccessible second core.

Read more...


by Juan See


With version 5.1.4 of PEmicro's GDB Server for ARM devices, initial support for Azure RTOS ThreadX is now available. The user does not have to do anything to set it up; the GDB server will automatically detect the presence, type, and configuration of an OS by the querying the application's symbol table for identifying characteristics. Using these discovered symbols, the debugger can traverse the kernel's internal data structures to enumerate the available threads and their corresponding execution context. This information is then used to dynamically populate the Eclipse views as the user navigates between the threads. 

Read more...


by Keith McNeil and Takao Yamada


Beginning October 1, 2021 the latest versions of PEmicro software will only be tested against and designed to work with the following PEmicro hardware interfaces:

MULTILINK DEBUG PROBES (2015+)

  • USB ML Universal, Rev. C or later
  • USB ML Universal FX, Rev. B or later
  • USB ML ACP

CYCLONE PROGRAMMERS (2016+)

  • Cyclone LC Universal
  • Cyclone LC ARM
  • Cyclone FX Universal
  • Cyclone FX ARM
Read more...


by Keith McNeil


PEmicro is changing its licensing for ICD and PKG software, in the same manner as we previously updated PROG software. Effective today, July 23, 2021, the license that activates ICD and PKG will reside on a Cyclone or Multilink debug probe rather than in the software itself. The user who activates the software will choose a Cyclone or Multilink on which to permanently install the license. This allows that hardware interface to work with ICD and PKG on any machine where a supported version of the software is installed.


Note that the ICD and PKG software itself is unchanged, it is only the licensing which has been updated.

Read more...


by Steve McGrath


PEmicro's tools now support AutoChips' MCU AC780x and AC781x devices. AutoChips offers innovative ARM processors designed for automotive electronics and high reliability industrial applications. These include BCM, T-BOX, BLDC motor control, industrial control, AC charging piles, and others.

PEmicro offers compatible development tools (Multilink debug probes with PROGACMP programmer, GDB Server Eclipse IDE plug-in) and production programming tools (Cyclone in-system programmers) to help make AutoChips projects easier and more cost-effective.

Read more...


by Zahar Raskin & Keith McNeil


PEmicro is pleased to announce our latest Eclipse-based GDB Plugins for ARM devices with Java 11 support compatibility. Java 11 support was introduced in PEmicro's ARM plugin version 4.9.2 in April of 2021, and all ongoing PEmicro plugin releases include Java 11 support, as well as backwards compatibility with Eclipse IDEs that still rely on Java 8-based JDK. Java 11 is a prerequisite for native Eclipse IDEs, starting from version 2020-12, as well as some proprietary Eclipse based IDEs from NXP (MCUXpresso IDE) and STmicroelectronics (STM32CubeIDE).    

Read more...


by Johnny Ng


Note: This blog post was updated on 24 June 2022 to reflect a change to the Console command.

Note: This blog post was updated on 10 October 26 to reflect a change in the licensing for Cyclone LC.

PEmicro has added a new feature to the Cyclone Control Suite that solves a difficult production issue for certain devices with ECC-enabled flash when programming dynamic data.

The Cyclone Control SDK and Cyclone Control Console support a new feature called Specify Overlay Programming that will be very helpful for devices such as the Infineon TriCore, Infineon Traveo-II, or NXP Qorivva. This blog post demonstrates how to use Specify Overlay Programming.

Now available in the latest Cyclone LC and Cyclone FX Installation Software

Read more...


by Keith McNeil


PEmicro's development and production tools now support ON Semiconductors RSL10 family of  microcontrollers. RSL10 devices are Bluetooth 5 capable, multi-protocol radio Systems on Chip (SoC) that feature extremely efficient Bluetooth Low Energy for wireless applications. An RSL10 Software Development Kit (SDK) is available to aid in fast development of ultra-low power Bluetooth Low Energy applications.

Read more...


by Keith McNeil


PEmicro's development and production tools now support GigaDevice's GD32™ family of  microcontrollers. GD32 devices are fast, efficient, and cost-effective MCUs featuring ARM® Cortex®-M3 cores. They showcase GigaDevice’s advanced gFlash memory technology to extend functionality and increase design flexibility. GD32 Evaluation Boards & Starter Kits are available to assist with application prototyping.

Read more...


by Keith McNeil


PEmicro offers launch day support of many NXP devices. NXP has now released the i.MX RT1170 series of crossover devices, which are fast, efficient, secure devices ideal for IoT, automotive, and industrial applications.

For this important MCU launch, PEmicro put together a  demonstration of how quickly and easily the user can create and load a programming image, and program an i.MX RT1176 device, using a Cyclone programmer.


Read more...


by Johnny Ng


PEmicro has released a Visual Basic .NET 2019 example utilizing the Cyclone Control SDK API.

The Cyclone Control SDK API allows developers to integrate the Cyclone LC and Cyclone FX into their applications. Using the API calls, you can control multiple Cyclones in stand alone programming operations and to read/update Cyclone settings.

The example project can be downloaded from our Github repository

Cyclone Control SDK also includes example applications for GCCMicrosoft Visual CMicrosoft Visual C#, Delphi/FPC, Labview, and Python.

Learn more about how you can use the Cyclone Control Suite to automate your production.



by Edison Tam


NXP’s i.MX RT10xx devices come with an advanced set of security features which provide a sophisticated level of protection for devices in the field. PEmicro’s Secure Boot Utility is a graphical user interface which configures Secure Boot for applications running on i.MX RT10xx devices and sets device security features to inhibit copying or misuse.  Functionality includes signing and encrypting applications, generating keys and certificates, setting security fuses, and running a security analysis of all settings.

The Secure Boot Utility automates building secure boot binary files and is used in the process of generating encrypted secure boot programming images for manufacturing.  The goal is to make sure the user's application data is secure in both the manufacturing stage and when devices are deployed in the field. The tool includes a security analyzer which grades the user's security choices based on how secure it will leave the device after programming.

The Secure Boot Utility is integrated into the Cyclone production programming software and included with the PROGARM programming software.

Read more...


by Kevin Perreault


PEmicro's Cyclone production programmers make programming NXP i.MX RT10xx devices with Secure Boot enabled extremely easy and secure. The Secure Boot Utility, which comes with the programmer, handles i.MX RT10xx application signing, encryption, as well as the details of security fuse configuration and locking. The programmer supports an extremely fast Secure JTAG connection to the target i.MX device.  

PEmicro's Production Programming Images are heavily encoded, and optionally cryptographically secureso the user’s firmware files, encryption keys, fuse settings, and passwords are safely protected from the moment the image is generated through the manufacturing process. Programming images can be restricted for use on specific cyclones, with specified date ranges and programming counts.

Learn about i.MX security features as well as see a demonstration of creating a secure i.MX RT10xx programming image.

Read more...


by Steve McGrath


PEmicro has expanded its line of UNIT Library Interface Routines by adding a package for Python support for ARM® Cortex™-M processors. PEmicro's UNIT Libraries allow the user to create custom Windows applications that can fully control an ARM® Cortex™-M processor using either PEmicro's Cyclone programmers or Multilink debug probes.

Read more...


by Keith McNeil


Updated Sept. 29, 2020.

PEmicro remains open, however most of our employees are working remotely. Our shipping status is as follows: 

  • We ship software orders on the same day they are received, delivered electronically. 
  • Overnight orders received before 3pm are usually shipped same day (must fit in large rectangular FedEx box or smaller). Larger orders or orders that are not overnight usually ship on Tuesdays and Thursdays. 
  • We are only shipping via FedEx
  • For domestic orders, DigiKey will ship some of our product on the same day they receive an order. 
  • For international orders, contact our resellers for their shipping availability. 

The best way to contact us during this time is via email. Our forums are also available for support: 

  • Sales Support: sales-info@pemicro.com 
  • Technical Support: technical-info@pemicro.com 
  • Support Forums: pemicro.com/forums 

We hope you and your loved ones remain safe.



by Zahar Raskin


NXP 's S32 Design Studio for ARM provides a comprehensive enablement platform for ARM development with full integration of PEmicro’s GDB Server for ARM devices. This provides advanced debug capabilities via PEmicro’s Multilink, Cyclone, and embedded OpenSDA debug interfaces.

Read more...


by Keith McNeil


PEmicro's Cyclone LC Universal and Cyclone FX Universal programmers have added support for Infineon's AUDO™ TC1xx and AURIX™ TC2xx and TC3xx TriCore devices, which are are ideal for optimized motor control applications and signal processing tasks. This makes them a preferred choice for many automotive and industrial applications. 

Read more...


by Johnny Ng


The Cyclone Control SDK is a software development kit with a comprehensive API that allows developers to seamlessly integrate Cyclone LC and Cyclone FX programmers into their applications. They can manipulate SAP images, launch SAP images, retrieve programming results, and update settings. This blog post demonstrates the use of the SDK in a Python application.

Read more...


by Johnny Ng


PEmicro’s software can calculate a checksum to help verify the data integrity of a SAP (Stand-Alone Programming) or eSAP (encrypted Stand-Alone Programming) image file. This checksum is a 32-bit hexadecimal number such as 0x0123ABCD. This number is unique to the SAP file, which is created by the user via the Image Creation Utility. If there are any differences (algorithms, object files, paths to these files, scripts, settings, description, name of the SAP files, or path of the SAP files) in how two SAP images are built, their checksums will also be different. The checksum should be recorded for a SAP image once it has been validated and becomes a golden file that is used for production. 


Read more...


by Johnny Ng


A common method that our clients use to verify the data integrity of a device under test is to calculate a checksum and then compare it against a known good value. To help make this task easier, PEmicro has added the ability to calculate and retrieve the checksum of a device under test. This feature is available on Cyclone LC and Cyclone FX programmers, starting with software release v.10.49. The most recent Cyclone software is always available on the Support & Downloads tab of the Cyclone product pages.

Read more...


by Keith McNeil


PEmicro has added support for WIZnet's W7500x devices to the Cyclone in-system programmer, Multilink debug probes, and PROG for ARM Cortex devices programming software. WIZnet's W7500x devices offer a hardwired TCP/IP core and are ideal for internet-connected (IoT) applications.

Current users of the Cyclone and Multilink/PROG can access PEmicro flash programming algorithms, including those for WIZnet's W7500x devices, on PEmicro's flash algorithm support page.



by Keith McNeil


The Embedded Online Conference is a virtual conference for Embedded Systems, DSP, Machine Learning and FPGA Engineers, which is taking place on Weds. May 20 & Thurs. May 21, 2020. PEmicro is offering a presentation that describes the security measures that are used on Cyclone programmers to protect valuable IP. PEmicro president Kevin Perreault discusses Cyclone cryptography, restrictions on programming images, the ease with which a user can implement these security features, and more. Watch the presentation on the Show Floor page.

Read more...


by Esteban Gonzalez


External memory, in the form of SD Cards, has proven to be very useful for some users as a physical way to distribute programming images to Cyclone programmers. This can be a convenient way to deliver images in scenarios where the Cyclone is not connected to the internet or a PC. 

In order to be used with a Cyclone, SD Cards are first formatted and encrypted at the sector level using industry standard AES encryption. The SD Card AES keys used are a blend of different information, and encryption happens in such a way that each SDCard is uniquely encrypted; only a Cyclone programmer has the knowledge to decrypt it. This means that any Cyclone FX can read the data inside the SD Card, which allows the SD Card to be moved around to different Cyclone FX units while also inhibiting a user from being able to copy the images.

Read more...


by Keith McNeil


PEmicro is changing its licensing for PROG software. Effective Monday, April 27, 2020 the license that activates PROG will reside on a Multilink debug probe rather than in the software itself. The user who activates the software will choose a Multilink on which to permanently install the license. This allows that Multilink to work with PROG on any machine where a supported version of the software is installed.


Note that the PROG software itself is unchanged, it is only the licensing which has been updated.

Read more...


by Zahar Raskin


STM32CubeIDE from STMicroelectronics is an Eclipse-based enablement platform which supports development and debugging of code on STM32 ARM microprocessors. PEmicro hardware interfaces: Multilink and Cyclone can be leveraged for advanced debug capabilities via an Eclipse GDB plugin that is freely available for installation into any Eclipse IDE from PEmicro update site (https://www.pemicro.com/eclipse/updates). This blog demonstrates the steps needed to install and configure PEmicro Multilink and Cyclone debug support in STM32CubeIDE to the point of launching a debug session.

WORKAROUND for newer STM32CUBE IDEs with CDT version 10.6 and greater

The workaround is to disable the CDT update site. In STM32CubeIDE, go to Help->Install New Software -> Manage...

In the "Preferences" dialog, uncheck the checkbox next to CDT:

Then install the PEMICRO plugin.

Read more...


by Mika Ichiki-Welches


Article updated Aug. 2021 to describe automatic fuse generation for NXP i,MX RT devices.

Some ARM devices have areas of flash memory dedicated to programming user configuration data. Writes to such areas can be sensitive or permanent for some devices, so it is important that the developer is able to write these options in an intuitive way in order to minimizes human error. PEmicro's PROGACMP v7.78 and Cyclone software installer v10.41 introduce a set of new "user options" commands:

  • Create/Modify User Options File (CU)
  • Specify User Options File (SU)
  • Program User Options (PU)

These commands allow the developer to individually program user options through the use of an IDE.

Read more...


by Keith McNeil


PEmicro has now upgraded the production programming capabilities for Renesas devices. PEmicro's original Renesas programming solution, Cyclone for Renesas, has been replaced by the Cyclone FX Universal with a Renesas adapter.  The Cyclone Universal FX provides a significant upgrade in programming technology over the legacy programmer. This article will walk the user through this new technology and look at some of the powerful features that are now available when using the Cyclone FX Universal to program Renesas devices.

Read more...


by Keith McNeil


A Renesas adapter is now available that allows the Cyclone FX Universal production programmer to program all Renesas devices supported by PEmicro.  Cyclone for Renesas users who wish to upgrade to the Cyclone FX Universal programmer may receive a discount by taking advantage of PEmicro's Cyclone trade-in program.

Read more...


by Gilbert Yap


Along with clock multiplier and dividers, clock trimming offers a way for users to control the frequency of internal clocks in their target processors. Unlike multipliers and dividers, digital clock trimming allows changes to the internal clock through specific registers. Trim resolution can be any number of bits and different manufacturers provide different levels of trimming. Clocks are typically  trimmed to a specific value from the factory and are within a specific tolerance.

Read more...


by Johnny Ng


PEmicro's Classic Automated Control Package is an older product that enables users to to control and automate the production process with PEmicro's legacy Cyclones (Cyclone PRO, Cyclone MAX, Cyclone for Renesas, Cyclone for ARM devices, Cyclone for STMicro). PEmicro most recent control package is the Cyclone Control Suite, which is included with all next generation touchscreen Cyclones (Cyclone LC and Cyclone FX). Like the Classic Automated Control Package, the newer Cyclone Control Suite also includes an SDK (called the Cyclone Control SDK).

Those who use the Classic Automated Control Package but are upgrading to a Cyclone LC or Cyclone FX programmer might have questions about the new Cyclone Control SDK, such as: 

  • What are the differences between the two SDKs?
  • Can the classic SDK be used with the new Cyclones?
Read more...


by Juan See


The Boot Mode Index (BMI) is a 2-Byte value stored in Flash that holds information about the start-up mode and debug configuration of an Infineon XMC1000  device. From the factory, XMC1000 series devices are configured with ASC_BSL (ASC Bootstrap Load) mode by default. In ASC_BSL mode, ARM Serial Wire Debug (SWD) capabilities are disabled. During debug entry, PEmicro tools will automatically change the Boot Mode Index (BMI) to "User mode with debug enabled (UMD) SWD", allowing the user to communicate with the Infineon XMC 1000 series through SWD. 

Read more...


by Zahar Raskin


The "S32 Design Studio for Power IDE" from NXP provides a comprehensive enablement platform for Power Architecture with full integration of PEmicro’s GDB Server for Power Devices. This provides advanced debug capabilities via PEmicro’s Multilink, Cyclone, and embedded OpenSDA debug interfaces.

Read more...


by Steve McGrath


DAVE™ is an Eclipse-based IDE by Infineon which supports development and debugging of code on XMC1000 and XMC4000 devices. PEmicro's Multilink debug probes and Cyclone programmers can provide sophisticated debug for these Infineon devices via the DAVE™ IDE.  To use PEmicro's debug probes the user can simply install PEmicro's GDB Server Plug-In for ARM devices and then create a launch configuration.

Read more...


by Julie Perreault and Keith McNeil


PEmicro's Cyclone stand-alone programmers use Stand-Alone Programming (SAP) images that are created by the user to in-system program a target. This video provides an overview of what constitutes a programming image and demonstrates how to set up a basic SAP image using the Cyclone Image Creation Utility.

Topics covered during setup include:

  • Target Power & Voltage Settings
  • Communication Settings
  • SAP image protection, including RSA/AES encryption that will only allow your SAP image to be decrypted on specific Cyclones 
Read more...


by Esteban Gonzalez, Keith McNeil & Peter Truong


PEmicro's new ProCryption Security feature on Cyclone programmers allows for easy-to-use custom encryption of programming images as well as control over how and when programming images are used. By taking advantage of these security features a user can send their programming images electronically with the confidence that their valuable IP will remain safe and only usable on their own Cyclone programmers. It is also possible to control how many times an image is programmed and when, such that unwarranted programming does not occur. Once implemented, these security measures are also easy to maintain.  

With ProCryption Security, Cyclone users can:

  1. Create RSA/AES encrypted programming images (eSAP images) that use their own uniquely generated ImageKey(s). These programming images may only be used on Cyclones that are pre-configured with the same ImageKey(s). 
  2. Restrict the use of programming images by programming count and date range. 
Read more...


by Keith McNeil


This blog post gives a step-by-step example of a company that wants to use the ProCryption Security features of custom encryption and image limitations to: 

  • Secure their programming images/IP from their own source computers all the way to their own Cyclone programmers at an external manufacturer
  • Limit production programming to occur only in a specific date range
  • Generate their own custom Encryption Keys and provision Cyclones with them
Read more...


by Julie Perreault


The Cyclone FX comes standard with many advanced features which aren't available by default on the Cyclone LC series of programmers. PEmicro offers a licensing mechanism to add three of these advanced Cyclone FX features to the Cyclone LC : ProCryption programming protection and encryption, Advanced Automation, and external SD card storage for images. 

Read more...


by Johnny Ng


The Cyclone Control SDK is a software development kit with a comprehensive API that allows custom applications to control multiple Cyclones in stand alone programming operations and to read/update Cyclone settings. This blog post demonstrates the use of the SDK in the Microsoft Visual C# language. 

NOTE: The examples in this blog are shown in Microsoft Visual C#. The Cyclone Control SDK includes interface code and demo applications for GCC, Microsoft Visual C, Microsoft Visual C#, Delphi/FPC, Labview, Python, and Microsoft Visual Basic.

Read more...


by Gilbert Yap


As of January 2020, PEmicro now offers a new method of programming user configuration data through the new Program User Options command. Click here for more details about this command.

PEmicro supports a wide selection of STMicroelectronics' STM32 device families. Many STM32 devices include a set of user configurable option bytes that can control features such as HW/SW watchdog, read protection, and write protection. These options give users a convenient way of changing the settings of their device. Configuring option bytes of a STM32Fx or STM32Lx device is made easy with our PROG software and Cyclone Image Creation Utility software

Read more...


by Mika Ichiki-Welches


Some Microchip/Atmel's SAM-Series devices allow rows of non-volatile flash memory (NVM) to be configured as EEPROM, so that users can treat NVM pages as EEPROM with Atmel's software, and let Atmel's back-end take care of keeping peripheral data safe.

PEmicro's Cyclone in-system programmers and PROGACMP flash programming software each allow users to set up NVM main flash space as emulated EEPROM by programming the EEPROM FUSE bits in the device's User Row. Our latest Microchip/Atmel algorithms support single-byte writes to the User Row, to preserve adjacent User Row settings.

Read more...


by Mika Ichiki-Welches


ARMv7-M devices have the ability to halt when specified exceptions occur. If exception catching is enabled, the processor will halt when a user's code hits the corresponding fault handler. Exception catching serves as an aid to development by alerting users in real-time about exceptions that occur in their code.

When installed in NXP's MCUXpresso IDE, PEmicro's GDB Server plug-ins from v3.96 onward include options for exception catching, and return information about the exceptions that have occurred.

Read more...


by Mika Ichiki-Welches


PEmicro considers the privacy of its customers' intellectual property to be of utmost importance. Silicon Labs' 32-bit devices feature an Authentication Access Port (AAP) as part of their security features, and for some of these devices, a debugger may have a limited time to access this port when communicating with an unsecured device. With that in mind, recent PROG software (v6.94) and Cyclone firmware (v10.04) releases now provide support to secure, unsecure, and mass-erase Silicon Labs devices with these debug time-sensitivities, which can help users keep their valuable data safe.

Read more...


by Gilbert Yap


PEmicro has expanded its ARM® device support of Cypress’ current PSoC 4, PSoC 5, and PSoC 6 devices. 

PEmicro's popular Multilink debug probes and Cyclone ISP programmers now include support for the following Cypress device families: 4000, 4000S, 4100, 4100S, 4100PS, 4100S Plus, 4100M, 4100BLE, 4200, 4200M, 4200L, 4XX8_BLE, 5200, 5400, 5600, and 5800, as well as Cypress’ new PSoC 6xx6 and 6xx7 series microcontrollers. 

Read more...


by Gilbert Yap


The safety of users’ intellectual property is a top priority for PEmicro. Utilizing the “Chip Protect” function of processors prevents data from being read or written from an external source, which helps keep your data secure. PEmicro is constantly expanding its compatibility with different manufacturers’ device security methods. Each manufacturer may employ multiple methods for securing or unsecuring a processor, so the goal is to make this process as simple and easy as possible for the user.

Read more...


by Gilbert Yap


Cypress’ PSoC5 line of microcontrollers are a great option for high performance at a low cost. The PSoC 5 provides an Error Correcting Code (ECC) feature to help detect errors in operations that manipulate the flash memory. The ECC peripheral can be enabled or disabled by writing to the Nonvolatile Latch (NVL). The advantage of disabling ECC is that each row of flash gains 32 bytes for data storage, extending the row from 256 to 288 bytes.

Read more...


by Gilbert Yap


PEmicro is constantly expanding its support for device security methods. The Cypress’ PSoC 4 Cortex-M0 processor-based microcontrollers have a few device features to prevent external flash access. Enabling device security features on products prevents third party sources from accessing or manipulating program code and data. This post aims to detail the secure and unsecure process for Cypress PSoC 4 devices. 

Read more...


by Julie Perreault


PEmicro has expanded the capabilities of Cyclone programmers to allow them to internally store and track serial numbers though the use of a unique serial number ID.  This increased sophistication allows Stand-Alone Programming (SAP) images stored on a Cyclone to share serial numbers that reference the same unique serial number ID. There are several cases where this is very useful. The first is when a user may want to update their firmware for a product to a new version but the serial number to have persistence.  The user may also have different products that need to be programmed with different firmware, but still want have those products draw from the same serialization sequence.  

Read more...


by Kevin Meyer and Steven McGrath


Dec. 2018 - We've updated this blog post with more info about Multilink and Cyclone implementation...

The JTAG specification introduced daisy chaining of MCUs in order to reduce the number of headers required to debug and program multiple MCUs. JTAG daisy chaining allows multiple MCU’s (and other JTAG compatible hardware, such as FPGAs) to share a single debug header. PEmicro currently supports daisy chaining of ARM-Cortex MCUs via our Cyclone programmers and Multilink debug probes. The same is true for most PEmicro software, including our Eclipse plugin GDB Server, and our Cyclone automation and control packages.

Read more...


by Julie Perreault and Keith McNeil


PEmicro is pleased to announce that the Multillink and Multilink FX debug probes have added real-time SWO data capture as well as power consumption monitoring in NXP's MCUXpresso IDE 10.3 release. SWO data capture includes high speed printf() output from running code, R/W accesses to memory and variables, interrupt execution, and more. The power consumption monitoring of the Multilink FX runs up to 250KSamples/S with a current detection range of 1mA to over 200mA. 

Read more...


by Steve McGrath


PEmicro has announced the addition of support and features for a new set of STMicroelectronics’ STM8 devices to PEmicro's diverse line of embedded systems tools.

STMicroelectronics’ STM8AL ultra-low-power series for automotive applications stresses green energy, application safety and power efficiency with the use of these microcontrollers. PEmicro’s powerful Cyclone Universal and Cyclone Universal FX stand-alone programmers now support these and many other families of STMicroelectronics’ devices.

Current users of compatible PEmicro products can update their product firmware to add support for these devices. The corresponding programming algorithms can be downloaded from PEmicro's online support center.



by Keith McNeil


PEmicro has added powerful SWO debug support to its plug-in for Eclipse-based ARM IDEs. Users previously had to step through code or use breakpoints and halt the device in an attempt to find bugs in their code. This would only provide insight into activity at one point in time. With SWO debug, the user can now take advantage of real-time insight into what’s going on in their device using SWO power, variables, and printf features. Once the device is stopped, they are able to get a broad insight into various events that occurred during execution, via ITM Trace. PEmicro’s SWO plug-in is available for Windows, Linux (Ubuntu), and Mac OS.

Read more...


by Peter Truong & Keith McNeil


PEmicro has designed our CYCLONE programmers, and more advanced CYCLONE FX programmers, to be helpful tools for for a broad range of production programming situations. In this video Edison Tam, one of PEmicro's senior design engineers, provides a quick and useful overview of these Cyclone programmers that will help those interested in production programming understand the Cyclone features, as well as how these features can provide specific benefits to a project or production line that save the user time and money. He demonstrates a typical configuration and use case for manual programming, as well as an overview of the control and automation features available with the Cyclone Control Suite.

Read more...


by Johnny Ng


April 2021 - We've updated this blog post with more information about gang operation.

PEmicro is excited to announce the release of a library of LabVIEW VI components as well as a sample project as part of the Cyclone Control Suite. This new feature facilitates easy integration of CYCLONE stand alone programmers into production applications developed in LabVIEW®. 

Read more...


by Peter Truong


PEmicro has been offering debug probes for over 20 years. Our latest models, the Multilink and the Multilink FX, have become two of our most popular products, with tens of thousands of units sold worldwide. With so many Multilinks in use, PEmicro felt that it made sense to create a program that enables customers to turn in old/broken units for a discount when purchasing new hardware, or when upgrading from a basic to a high-speed model. Therefore PEmicro is pleased to introduce the Multilink Trade-in Program.

Read more...


by Kevin Perreault


PEmicro's CYCLONE FX programmer provides extremely high-speed and robust debug communications rates for ARM® Cortex® devices. With debug shift speeds reaching 75 Mbits/s, the download and verification rates achieved for almost every ARM Cortex device, even low-speed Cortex M0 parts, are in the MBytes per second range. 

Read more...


by Zahar Raskin


PEmicro's run control and FLASH programming support is fully integrated into IAR’s Embedded Workbench for ARM microcontrollers. This provides debug capabilities via PEmicro's Multilink, Cyclone and embedded OpenSDA debug interfaces, which support a broad range of ARM devices from NXP, STMicroelectronics, Atmel, Cypress, Infineon, Silicon Labs and many others. For complete list of ARM devices that PEMicro supports, please visit the following page: http://www.pemicro.com/arm/.

Read more...


by Nick DeLeon & Keith McNeil


PEmicro takes its responsibility as a corporate citizen seriously, both as it relates to our products and our footprint as a company. RoHS, CE, Conflict Minerals and other certifications and programs help us to make sure our products live up to our own and industry standards. We believe environmental compliance is an essential part of doing business and strive to meet regulations and certifications that make the world a safer and healthier place for all.

Read more...


by Zahar Raskin


PEmicro's run control and FLASH programming support is fully integrated into ARM's MDK-ARM Keil uVision Integrated Development Environment v5.25 for ARM microcontrollers. This provides debug capabilities via PEmicro's Multilink, Cyclone and embedded OpenSDA debug interfaces for a broad range of ARM devices from NXP, STMicroelectronics, Atmel, Cypress, Infineon, Silicon Labs and many others. For complete list of ARM devices that PEMicro supports, please visit the following page: http://www.pemicro.com/arm/.


Read more...


by Johnny Ng


April 2021 - We've updated this blog post with steps to perform an automated silent install of the Cyclone software package. See Section 7 below.

PEMicro has released the Cyclone Control Suite which offers a powerful yet flexible set of utilities to automate control of the Cyclones on your production line. Many of our users have to work with a very large number of stand-alone programming (SAP) image files and have to continually regenerate these images with new binaries. This blog post shows how they can also fully automate the process of generating stand-alone programming (SAP) image files to remove the chance of errors that could occur when the process is done manually.

Read more...


by Keith McNeil


PEmicro's CYCLONE_UNIVERSAL and CYCLONE_UNIVERSAL_FX programmers now support STMicroelectronics' STM8 devices via the Cyclone's PORT F 6-pin header. For convenience, we also offer an STM8 Adapter, sold separately, which converts those signals to a 4-pin ERNI connector.  

Read more...


by Esteban Gonzalez


A volume production solution often relies on simultaneous gang programming of different target boards to meet speed and throughput requirements. This programming scenario may integrate Cyclone programmers into a fixture which interfaces to a panel of boards to be programmed. Programming is commonly controlled and monitored from a local computer, especially when customized dynamic data is being added to the main binary image that is being programmed into each target.

PEmicro’s gang programming solution is to control many Cyclone programmers simultaneously via the Cyclone Control Suite. A mix of programming images, targets, and data can be simultaneously programmed into many devices while maintaining a high level of performance because each Cyclone is itself an independently operating programmer.  

Read more...


by Keith McNeil & Kevin Perreault


Note: This blog post was updated io August 2, 2022 following a reorganization of Cyclone features..

The Cyclone Control Console is a powerful command-line application that allows simultaneous control of one or more Cyclones. Programming images can be added/removed, settings read/set, programming operations launched, and dynamic data programmed. The command-line application displays comprehensive status messages and also returns an error code indicating success or failure. The application can be launched from a script, a console, or another application. It is one of the three main components of the Cyclone Control Suite including : the Cyclone Control Console, the Cyclone Control GUI, and the Cyclone Control SDK.

Read more...


by Kevin Perreault


Note: This article was updated August 2, 2022 to reflect a re-organization of Cyclone features.

PEmicro has released a powerful new set of automated control software, the Cyclone Control Suite, to support PC based control of our popular Cyclone LC and Cyclone FX stand-alone programmers.

The suite provides comprehensive control of one or more Cyclones from the PC via the following components: the Cyclone Control GUI application, the Cyclone Control Console application, and via custom PC applications built using the Cyclone Control SDK. Ways to control the Cyclone include programming launch, recovering results, managing images resident on a Cyclone, adding unique programming data for each target, as well as recovering descriptive errors.

Read more...


by Johnny Ng


PEmicro’s product line of Cyclone stand-alone programmers provides a fast, robust, and automated solution for production-scale programming of microprocessors. However, production facilities may desire an even higher level of automation than the single-button touch capability that is offered by the Cyclone. PEmicro offers several means of automating control, including a console application, Ethernet/Serial protocol communications, or the SDK included in PEmicro's new Cyclone Control Suite. In this article, we discuss using the SDK to automate programmer control and the levels of flexibility and scalability that it offers our customers.

NOTE: This example is shown in C. The Cyclone Control SDK interface code and demo applications are included for GCC, LabView, Microsoft Visual C, Microsoft Visual C#, Delphi/FPC, Python, and Microsoft Visual Basic.

Read more...


by Esteban Gonzalez


Note: This blog post was updated in July 2019 with new information regarding Cyclone image encryption (part of the ProCryption Security feature).

As part of the Cyclone Control Suite, PEmicro includes a graphical application called the Cyclone Control GUI that allows the user to add and remove images, access Cyclone settings, read Programming Image properties and statistics, and remote access a Cyclone's display. It also provides the user with tools to manage ImageKeys (for encrypted images), serial files, and optional Cyclone licenses.

Read more...


by Peter Truong


PEmicro is pleased to introduce our Cyclone Trade-in Program which is a simple upgrade path to trade-in an old or non-functional Cyclone unit for a discount on a new CYCLONE or CYCLONE FX programmer.

Read more...


by Johnny Ng


August 2, 2022 - We've updated this blog post to reflect the re-organization of touchscreen Cyclone features.

Migrating from the legacy Cyclone PRO and Cyclone MAX to the Cyclone LC Universal or Cyclone FX Universal is extremely easy. The Universal programmers are close to drop-in replacements for the PRO and MAX, albeit more powerful. Learn what to look out for when making the transition.

Read more...


by Mikhail Andreev


PEMicro is pleased to announce the release of a new expansion plugin for PEmicro's Eclipse GDB Server. With this release, PEmicro has added extensive new device support for a wide variety of ARM device manufacturers. Support now includes devices from NXP, Atmel, Cypress, Infineon, Maxim, Nordic, Silicon Labs, STMicro, Texas Instruments, and Toshiba. For a complete listing of supported devices, see PEmicro's supported ARM devices page..

Read more...


by Edison Tam and Peter Truong


PEmicro offers three USB Multilink debug probes, each with different features or device support. In this video, Edison Tam offers a brief overview of our Multilinks to help users decide which Multilink would be best suited to their project. Read more...


by Huajun Liu


PEmicro has just released a new version of the Cyclone Image Creation Utility that allows the user to retrieve the configuration for a Stand Alone Programming (SAP) image directly from a previously saved image. Once the image configuration settings have been retrieved from an image file, the user can then regenerate the image, or modify the settings and generate a new file, or even use those settings with other .s19 files to generate a SAP image with different source but the same configuration. Read more...


by Zahar Raskin


NXP has launched the MCUXpresso Integrated Development Environment for LPC and Kinetis microcontrollers with PEmicro’s GDB Server fully integrated. This provides advanced debug capabilities via PEmicro’s Multilink, Cyclone, and embedded OpenSDA debug interfaces including: hardware breakpoints, watchpoints, real-time variables, semihosting, FreeRTOS awareness, the ability to attach to a running target, the ability to provide target power, remote debug, and more.

Read more...


by Keith McNeil


PEmicro's Cyclone LC and Cyclone FX programmers represent our effort to bring next-gen technology to the popular Cyclone platform. Some of the many improvements we were able to incorporate include better usability (via the 4.3" color touchscreen display), enhanced security, larger storage, and faster communications. The first of these new programmers launched in November 2015, and we now offer two models at each of the Cyclone LC  and Cyclone FX  levels - one that supports ARM devices plus many other NXP devices, and a more economical option that supports ARM devices only.

Read more...


by Johnny Ng


In addition to supporting the flash that resides in many different microcontrollers, PEmicro supports flash connected to an MCU via the SPI, I2C, and Address/Data bus interfaces. Depending on how the flash device is connected to the MCU, the programming algorithm may need to be set up to properly configure the external address, data, and bus control pins of the MCU. If you are not sure if you selected the right algorithm for your flash memory, please also read this blog post on selecting a flash algorithm.

Read more...




PEmicro is exhibiting at EmbeddedWorld 2017 in Nuremberg, Germany (Hall 4, Booth 123). We have been developing some exciting technologies that can save time and money during both product development and product manufacturing and will be demonstrating these powerful new features for our GDB Server for ARM devices and our CYCLONE FX programmers.

Read more...


by Gerardo Ravago


There comes a time when an embedded application becomes complex enough that it requires an operating system. This may be because of a need for rich driver libraries, or a sophisticated task scheduling engine. In either case, a developer needs an equally sophisticated debugger to provide invaluable context information of their application. To that end, PEmicro introduced OS-aware debugging in its GDB Server for ARM devices. Initial support is available now for FreeRTOS, with further OS modules to be developed. PEmicro's GDB Server for ARM devices is available for download at no cost and works with PEmicro Multilink, Cyclone, and OpenSDA hardware interfaces.

Read more...


by Juan See


The ability to view variables and memory while a target ARM device is running has been added to PEmicro’s GDB Server Plug-in for ARM devices. This Eclipse plugin can be installed in any Eclipse-based IDE and supports the debug of ARM microcontrollers via PEmicro’s Multilink, Cyclone, and OpenSDA debug hardware. The “Real Time Expressions” view, which is part of the plugin, is similar to the normal expressions view, except that it works while the part is running.

Read more...


by Mikhail Andreev, Updated by Steven McGrath


PEmicro’s GDB Server can be installed directly into an Eclipse based IDE from an update site on PEmicro’s website. This adds the ability to debug via PEmicro’s Multilink, Cyclone, and OpenSDA hardware interfaces via the standard GDB debugger. Features include flash programming, breakpoints, watchpoints, trim, memory preservation, real-time variables, semi-hosting, and more. PEmicro periodically updates the plugins on its website with new device support, new features, and bug fixes.

Read more...


by Esteban Gonzalez


The Cyclone FX has the capability to automatically select and launch a programming image based upon a scanned barcode. This can generate an error if more than one image corresponds to the barcode or no images correspond to the barcode. The CYCLONE FX includes a way to quickly gain insight into the issue. A log file is created every time the barcode scanner operates and it details the scanned barcode as well as the analysis process used to select the appropriate programming image.

Read more...


by Julie Perreault


Different targets require a different power schemes that depend on the design of the target board, target voltages, and even the device architecture. PEmicro has designed their Cyclone LC and Cyclone FX to optionally power a target before, during, and after programming. Power can be sourced at many voltage levels from the Cyclone itself or sourced by an external power supply and switched by the Cyclone.

Read more...


by Kevin Perreault


The CYCLONE LC and CYCLONE FX programmers from PEmicro have large 4.3” touchscreens which allow the user to see the Cyclone’s current status, select programming images, configure settings, and more. However, sometimes the Cyclone may be either at a remote location or physically inaccessible. For example, Cyclone programmers are often mounted within enclosed test fixtures and sometimes even have the screens physically removed to save space. In any of these cases, the touchscreen can also be accessed remotely, via Ethernet and USB.

Read more...


by Edison Tam



PEmicro is excited to announce that we have recently added debug and flash programming support for a number of new ARM processor families:


Read more...


by Takao Yamada


PEmicro has just released pipelined programming algorithms for a variety of Power Architecture devices. These new pipelined algorithms can be huge time-savers for those who program Power Architecture devices either in development or on their manufacturing lines, as they result in 50% to 100% faster programming times than using non-pipelined algorithms.

Read more...


by Esteban Gonzalez and Peter Truong


Automatic selection and launch of a specific flash programming image based on a scanned barcode can improve the speed and accuracy of production programming, especially when there is a varied product mix being programmed. Barcode scanning improves accuracy by making the process of selecting a programming image fast, automatic, and less vulnerable to user error. PEmicro's CYCLONE FX programmers have the ability to use a barcode scanner, connected via the Cyclone's host USB port, to initiate programming. When a barcode is scanned, the Cyclone selects a specific programming image based on the barcode and programs the target board accordingly.

Read more...




PEmicro has announced the release of support for macOS in PEmicro’s Eclipse GDB Server. PEmicro offers a downloadable GDB server plug-in for Eclipse-based 3rd party IDE’s including NXP MCUXpresso, Kinetis Design Studio, and CodeWarrior. It also features full support for PEmicro's Multilink debug probes and Cyclone production programmers, plus NXP’s openSDA series of debuggers and programmers. Apple® users are now able to take advantage of PEmicro's versatile hardware solutions using NXP’s software tools and PEmicro’s GDB server in their preferred operating system.

Read more...




PEmicro has announced the release of a new Multilink development tool and a new Cyclone manufacturing tool, both focused specifically on ARM Cortex devices.

Read more...




PEmicro has announced the addition of support for Renesas' RH850 devices to PEmicro's diverse line of embedded systems tools.

Renesas' RH850 is a family of high-performance, low power automotive microcontrollers. PEmicro's powerful Cyclone for Renesas stand-alone programmer now supports these and many other families of Renesas devices.

Current users of compatible PEmicro products can update their product firmware to add support for these devices. The corresponding programming algorithms can be downloaded from PEmicro's online support center.





PEmicro has announced the addition of support Nordic Semiconductor's nRF52 devices to PEmicro's diverse line of embedded systems tools.

Read more...




PEmicro's ProCryption Security feature for Cyclone programmers offers user the ability to add usage restrictions to programming images. These usage restrictions include the ability to limit programming to a specific date range and also to set a maximum number of programming operations which can occur. The effect of this is that the user can limit the duration and amount of programming allowed by an image. This can be useful for protecting the IP contained within a programming image as well as making sure that programming images in production are not too far out of date. These restrictions persist even when the images are deleted/restored on a Cyclone unit's internal memory or SD card. Images are encoded in such a way as to deter tampering.

Read more...




PEmicro is now shipping Rev. C of the Cyclone for ARM devices, which represents an evolution in both features and value from the older Rev. B model. PEmicro's Cyclones have set the standard for powerful, versatile production programming and debug. The Cyclone for ARM devices was designed to offer the very best of the Cyclone platform with a focus on enhanced security, extremely fast performance, test, and expandability.

Read more...




PEmicro is now shipping the Cyclone Universal FX, which is the flagship model of PEmicro's next-generation Cyclone programmers. PEmicro's Cyclones have set the standard for powerful, versatile production programming and debug. The Cyclone Universal FX was designed to offer the very best of the Cyclone platform with a focus on enhanced security, extremely fast performance, test, and expandability.

Read more...




PEmicro is pleased to announce that support has been added to its products for files using version 3 and version 4 of the ELF/DWARF format. This is in addition to existing support for ELF/DWARF version 2 and includes both debug and object information handling. Support for 64-bit objects and structures within the ELF/DWARF files has also been added. Support for these additional file formats is available today in PEmicro's debug, flash programming, and test products.





PEmicro is now shipping the Cyclone Universal, which is the first of PEmicro's next-generation Cyclone programmers. PEmicro's Cyclones have set the standard for powerful, versatile production programming and debug. The Cyclone Universal was designed as the first in a next-generation Cyclone platform with a focus on security, performance, test, and expandability.

Read more...




PEmicro has further expanded its ARM® device support by today announcing support for Maxim MAX716xx processors. Users of PEmicro's Cyclone for ARM devices production programmer will be able to take advantage of this support to work with these Maxim ARM devices.

More about these devices, from Maxim's product page: "The MAX71617 is a low-power, single-phase energy measurement system-on-chip (SoC), and the MAX71637 is a low-power polyphase energy measurement SoC."

Users may visit pemicro.com/arm to check whether their specifc device is supported.

ARM and Cortex are registered trademarks of ARM Limited or its subsidiaries.





PEmicro has announced that its software products, which include flash/EEPROM programmers, in-circuit debuggers, interface library routines, and other embedded systems tools, are now officially compatible with the Windows 10 operating system.

Windows is a registered trademark of Microsoft Corporation.





PEmicro has further expanded its ARM® device support by today announcing support for Cypress' PSoC® 4 and Toshiba's TX00/TX03/TX04 processors. Users of PEmicro's Cyclone for ARM devices production programmer will be able to take advantage of this support to work with these Cypress and Toshiba ARM devices.

Cypress' PSoC® 4 are very low-power 32-bit ARM Cortex®-M0 devices that can integrate analog and digital ICs. Toshiba's TX00, TX03, and TX04 represent a selection of ARM® Cortex®-M devices that, collectively, offer high energy efficiency, high-precision analog functions, high code density, fast interrupt response times, and DSP extensions.

Users may visit pemicro.com/arm to check whether their specifc device is supported.

ARM and Cortex are registered trademarks of ARM Limited or its subsidiaries. PSoC is a registered trademark of Cypress Semiconductor Corporation.





Supported Architectures

  • Kinetis®
  • S32
  • LPCxxxx
  • ColdFire® V2/V3/V4
  • ColdFire+/V1
  • MPC5xx/8xx
  • Qorivva® (MPC5xxx, SPC5xxx)
  • DSC
  • MAC7xxx
  • S12Z
  • HC(S)12(X)
  • HCS08
  • HC08
  • RS08
  • ARM® Cortex® processors

BOSTON, MA – July 14, 2015 - Following their debut at the 2015 Freescale Technology Forum, PEmicro's soon-to-be-released Cyclone Universal and Cyclone Universal FX are now available to pre-order. Production quantitites of both new Cyclone programmers are expected to ship by Sept. 15 (subject to change). Those interested in placing a pre-order or simply reviewing the features of our next-generation production programming, test, and debug interfaces may do so at the Cyclones' PEmicro product page. These new Cyclones each support many architectures and offer impressive feature sets that may include:

  • Large internal memory: 1GB+ secure memory storage.
  • Focus on security: Internal memory protection & encryption, anti-tampering technology, tie images to specific Cyclones, programming count limits, date range limits, logging, etc.
  • Extremely fast target communications: 25mb/s+
  • Enhanced Interface: 4.3" Touch Screen, 1M touch Start Button.
  • External memory: SDHC port for external memory cards
  • Test Support: Images can run test code before programming
  • And more! Launch port, battery backed clock, provides and switches power to target, expanded architecture support, bar code scanner support, current & voltage measurement, etc.

Join Us On Facebook & Twitter

   
Like us on Facebook and follow us on Twitter for the latest news about the upcoming release of the Cyclone Universal & Cyclone Universal FX.

Click to pre-order, or to learn more about the Cyclone Universal & Cyclone Universal FX.

ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries).
Freescale, Qorivva, Kinetis, and ColdFire are registered trademarks of Freescale Semiconductor, Inc.





Supported Architectures

  • Kinetis®
  • S32
  • LPCxxxx
  • ColdFire® V2/V3/V4
  • ColdFire+/V1
  • MPC5xx/8xx
  • Qorivva® (MPC5xxx, SPC5xxx)
  • DSC
  • MAC7xxx
  • S12Z
  • HC(S)12(X)
  • HCS08
  • HC08
  • RS08
  • ARM® Cortex® processors

AUSTIN, TX – June 22, 2015 - PEmicro's Cyclones have set the standard for powerful, versatile production programming and debug. We have completely redesigned the Cyclone Platform with state of the art, high-speed technology. We have maintained compatibility with our existing product line while combining support for many target architectures in a single unit and focusing on outstanding security, performance, and features.

Join us at the Freescale® Technology Forum (FTF) in Austin, June 22-25. Come visit us at booth #617 for a chance to win one of two Cyclone Universal FX units, once they are released!

In addition to supporting more target architectures, these new Cyclones offer several improvements over their predecessors:

  • Large internal memory: 1GB+ secure memory storage.
  • Focus on security: Internal memory protection & encryption, anti-tampering technology, tie images to specific Cyclones, programming count limits, date range limits, logging, etc.
  • Extremely fast target communications: 25mb/s+
  • Enhanced Interface: 4.3" Touch Screen, 1M touch Start Button.
  • External memory: SDHC port for external memory cards
  • Test Support: Images can run test code before programming
  • And more! Launch port, battery backed clock, provides and switches power to target, expanded architecture support, bar code scanner support, current & voltage measurement, etc.

Join Us On Facebook & Twitter

   
Like us on Facebook and follow us on Twitter for the latest news about the upcoming release of the Cyclone Universal & Cyclone Universal FX.

Click to learn more about the Cyclone Universal & Cyclone Universal FX.

ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries).
Freescale, Qorivva, Kinetis, and ColdFire are registered trademarks of Freescale Semiconductor, Inc.





PEmicro is now providing serial SPI memory device programming algorithms for devices attached to ARM® Cortex-M microcontrollers. There are many reasons to use PEmicro’s algorithms for your programming requirements. Some of the more significant reasons are:

Read more...




PEmicro announced the release of Version 2.08 of its GDB Server for Kinetis® devices. The PEmicro GDB Server is available at no cost as an Eclipse plug-in or Windows GUI application. The latest version supports Windows 7/8 as well as Ubuntu Linux 14.04 and RHEL/CentOS 7.0.

Read more...




BOSTON – March 3, 2015 - PEmicro announced support for Atmel's SAMxx ARM devices. Users of PEmicro's Cyclone for ARM devices production programmer will now be able to take advantage of this support to work with Atmel's SAMxxx ARM devices. SAMxxx devices are low-power, energy-efficient microcontrollers that include ARM Cortex cores.






PEmicro has released Rev. C of it's popular, all-in-one USB Multilink Universal interface. The case color of the Rev. C interface has been updated from green to blue, however the functionality of the Multilink Universal remains the same.
Read more...




PEmicro has developed a new pipelined version of its flash programming engine for Kinetis and other ARM® Cortex™ devices with more than 4KB of RAM by leveraging some unique aspects of the architecture. This pipelining mechanism improves already fast programming rates by up to 50%.

Read more...




PEmicro announced the addition of several new features to its popular Cyclone MAX stand-alone/automated flash programmer.

High-Speed Kinetis Algorithms
In addition to the above, the Cyclone MAX installation software now includes a faster, more streamlined set of pipelined algorithms that improves the flash programming times of Kinetis devices.

Qorivva MPC574x Support
The Cyclone MAX now includes stand-alone programming and device support for Freescale's Qorivva MPC5748G cut 2 and MPC5746C devices with its popular Cyclone MAX production programmer.

User Control of MCU Reset
Version 7.84 of the Cyclone MAX software also provides the ability to hold the reset line low upon a target device power up, a feature that is especially useful for devices such as Freescale's Kinetis KE02 that implement a multiplexed reset line.

Cyclone MAX users may download the updated Cyclone MAX software from PEmicro's support center.





PEmicro announced the addition of support for Freescale's high-performance S12Z devices to its popular Cyclone PRO stand-alone/automated in-circuit programmer. Freescale's S12Z devices include the S12ZVC, S12ZVH, S12ZVL and S12ZVM families. This further expands the range of Freescale architectures that the Cyclone PRO is able to program, which includes HC(S)12(X), RS08, HCS08, HC08 and ColdFire+/V1 devices.

Cyclone PRO users may download the latest Cyclone PRO software, which includes updates for S12Z support, from PEmicro's support center.





PEmicro announced the addition of support for Freescale's MPC5xx/8xx devices devices to its high-speed Multilink Universal FX development interface. This addition enhances the all-in-one capabilities of the Multilink Universal FX - PEmicro's flagship Multilink interface - and solidifies PEmicro's future support for Freescale's MPC5xx/8xx architecture.

Multilink Universal FX users may download the updated Technical Summary (v.1.03) from PEmicro's support center.





PEmicro announced the addition of stand-alone programming support for Freescale's Qorivva MPC57xx devices to its popular Cyclone MAX production programmer. Version 7.81 of the Cyclone MAX software includes support for the following Qorivva devices:

Read more...




BOSTON – December. 23, 2013 - P&E Microcomputer Systems, Inc. a leading manufacturer of third-party tools for Freescale microprocessors, announced the release of a new UNIT Hardware Interface Library: UNITDSC, for Freescale's DSC processors. PEmicro's UNIT libraries consist of routines that interact with and control PEmicro's hardware interfaces. This allows users to create custom run-control and test applications. Standard UNIT licenses allow the applications to be used on up to 5 computers. PEmicro also offers Distributable versions of its UNIT software which can be used on an unlimited number of computers.

UNITDSC can be used to control Freescale's DSC devices with PEmicro's Multilink Universal and high-speed Multilink Universal FX development interfaces, as well as the Cyclone MAX production programmer.





PEmicro announced the release of combined MSD and DEBUG OpenSDA firmware applications. The latest collection of OpenSDA applications supports MSD, DEBUG and CDC virtual serial functionality without requiring one to switch back and forth between MSD and DEBUG applications. The latest OpenSDA collection includes applications for all Freescale Freedom and Tower OpenSDA-based evaluation platforms and can be used under Windows® 8.x/7/XP as well as Linux® and Mac OS® operating systems.

Read more...




PEmicro announced the release of its ICDS12ZZ in-circuit debugger software for Freescale's S12Z devices. S12Z MCUs are integrated, mixed-signal devices designed for efficiently developing automotive applications. ICDS12ZZ works in tandem with PEmicro hardware interfaces, such as the Multilink Universal or Multilink Universal FX to debug code in-circuit on Freescale S12Z devices. The ICDS12ZZ expands PEmicro's suite of S12Z software, which includes programming software and interface library routines, which allow custom software designs such as production line testers.





BOSTON – September 25, 2013 - P&E Microcomputer Systems announced support for a group of Renesas' RX family of devices in Rev. C of the Cyclone for Renesas® In-Circuit Flash Programmer. P&E has implemented support for Renesas' RX600 devices and will continue to add support for other RX devices in the near future. RX is a range of 32-bit Renesas microcontrollers that feature high performance and code efficiency while also offering low power consumption and new/enhanced peripherals. The latest version of P&E's Cyclone for Renesas adds RX to existing support for RL78, R8C, M16C and M16C/80, M32C, H8 and H8S/Tiny devices.

Renesas is a registered trademark of Renesas Electronics Corporation.





BOSTON – September 12, 2013 - P&E Microcomputer Systems announced the release of its PROGS12ZZ in-circuit flash programming software for Freescale's S12Z devices. S12Z MCUs are integrated, mixed-signal devices designed for efficiently developing automotive applications. PROGS12ZZ works in tandem with P&E hardware interfaces, such as the Multilink Universal, Multilink Universal FX, or Cyclone PRO, to program Freescale S12Z devices. These pairings represent a variety of economical, versatile, and powerful programming solutions.





BOSTON – August 2, 2013 - P&E Microcomputer Systems announced the release of Rev. C of its Cyclone for Renesas® In-Circuit Flash Programmer, which adds support for Renesas' RL78 devices. RL78 is a new family of Renesas microcontrollers that are compact, low-cost, and designed for extremely low power applications. Renesas offers RL78 devices that are tailored towards general purpose, lighting, automotive, and other applications. The latest version of P&E's Cyclone for Renesas adds RL78 to existing support for R8C, M16C and M16C/80, M32C, H8 and H8S/Tiny devices, and opens the path for future support of additional devices such as the RX family.

Renesas is a registered trademark of Renesas Electronics Corporation.





BOSTON – July 2, 2013 - P&E Microcomputer Systems has released its new PROGDSC flash programming software. PROGDSC is Windows-based in-circuit flash programming software for Freescale's DSC devices, and includes the CPROGDSC command-line programmer for scripted automated programming. Those who wish to use the software may download the full version from a link on the product page, where they will also find a link for requesting a license for the software free of charge.

PROGDSC communicates with target devices through one of P&E's compatible hardware interfaces. The Multilink Universal and high-speed Multilink Universal FX are development interfaces, while the Cyclone MAX is one of P&E's flagship Cyclone stand-alone production programmers: it's made to withstand the rigors of a production environment, can be used manually or fully automated, and is the ideal solution when programming speed is crucial. 





BOSTON - May 17, 2013 - P&E Microcomputer Systems announced the newest addition to their line of powerful Cyclone automated/stand-alone programmers: the Cyclone for ARM® devices. The Cyclone for ARM devices is a production-ready programmer with support for ARM devices from Freescale (Kinetis K-series & L-series) , STMicroelectronics (STM32), NXP (LPC1xxx) , and Texas Instruments (Stellaris™ LM3S/LM4).

The Cyclone's on-board memory and intuitive setup software make it easy to configure the programmer and load programming images. Configuration and operation are extemely flexible, with Ethernet, USB, and Serial communications options. Cyclone operations can be fully automated, or programming tasks can be accomplushed manually. The LCD menu and buttons offer complete stand-alone functionality. P&E maintains a frequently updated library of programming algorithms for compatible devices on the P&E support page and will continously be adding support for additional architectures.

ARM is a registered trademark of ARM Ltd. or its subsidiaries.
Texas Instruments is a registered trademark and Stellaris is a trademark of Texas Instruments Incorporated.
Kinetis is a registered trademark of Freescale Semiconductor, Inc.
NXP is a registered trademark of NXP Semiconductors.
STMicroelectronics is a registered trademark of STMicroelectronics, Inc.





BOSTON – December. 17, 2012 - P&E Microcomputer Systems, Inc. a leading manufacturer of third-party tools for Freescale microprocessor, announced the release of  two new UNIT Hardware Interface Libraries: UNITACMP for ARM® Cortex™ processors,  and UNITS12Z  for Freescale's S12Z processors. P&E's UNIT libraries consist of routines that interact with and control P&E's hardware interfaces. This allows users to create custom run-control and test applications. Standard UNIT licenses allow the applications to be used on up to 5 computers. P&E also offers Distributable versions of its UNIT software which can be used on an unlimited number of computers. 

UNITACMP can be used to control ARM Cortex devices with P&E's Multilink Universal and Multilink Universal FX development interfaces, Tracelink trace-capture debug interface, and Cyclone MAX production programmer. 

UNITS12Z  can be used to control S12Z devices with P&E's Multilink Universal and Multilink Universal FX development interfaces, and Cyclone PRO production programmer. Support for Tracelink trace-capture debug interface will be added in the near future. 

ARM is a registered trademark and Cortex a trademark of ARM, Limited.

 





Freedom boardBOSTON – Sept. 21, 2012 - With the recent launch of Freescale's Freedom platform for Kinetis KL25 microcontrollers, P&E Microcomputer Systems Inc., a leading developer of third-party tools for Freescale microcontrollers, is pleased to announce that it is hosting an OpenSDA resource page to provide device drivers, firmware updates, and additional information to users of the FRDM-KL25Z evaluation board. OpenSDA is the open standard which the Freedom platform uses to enable USB-based serial and debug communications. P&E's OpenSDA resource page is available at pemicro.com/opensda.

P&E is a key OpenSDA partner who developed much of the software which resides on the Freedom board, including mass storage and debug applications. The mass storage device (MSD) is a bootloader which allows programming and other applications to be loaded quickly. P&E's debug application provides JTAG/SWD debug and virtual serial interfaces and is broadly supported by several popular toolchains, including Freescale's CodeWarrior and software by IAR and Keil.





BOSTON – Aug. 27, 2012 - P&E Microcomputer Systems has announced the release of its latest Hardware Interface Drivers, v.11. The updated drivers include preliminary support for the upcoming Windows 8 operating system, as well as support for OpenSDA hardware. P&E maintains a resource page for OpenSDA firmware and drivers at pemicro.com/opensda.

P&E's latest Hardware Interface Drivers may be downloaded at:

pemicro.com/downloads/download_file.cfm?download_id=301.





 

BOSTON – Mar. 15, 2012 - P&E Microcomputer Systems Inc., a leading developer of third-party tools for Freescale microcontrollers, has announced the addition of support for Freescale DSCs (digital-signal controllers) to key P&E development and production programming interfaces. Freescale DSCs are designed to blend processing power with specific, optimized control loop capabilities. P&E's DSC-compatible products represent a range of feature sets and price points in order to accommodate projects of any scope and budget.

P&E's Cyclone MAX, a flagship Automated Programmer and Debug Interface that is designed to handle a variety of tasks, including low and high volume programming in demanding production environments, now offers support for the following Freescale DSC families: MC56F80xx, 56F82xx, MC56F83xx, and MC56F84xxx. In addition, the new Cyclone MAX firmware (v.7.70) streamlines the unit's LCD display and provides more user selected and customized information. 

The USB Multilink Universal and the high-speed USB Multilink Universal FX also support Freescale's MC56F80xx, 56F82xx, MC56F83xx, and MC56F84xxx DSC families as part of an "all-in-one" approach that includes support for many other Freescale MCU architectures. The USB Multilink Universal is P&E's entry-level all-in-one development interface, and the USB Multilink Universal FX features up to 10x faster download speed and the ability to supply target power, while remaining an excellent overall value.

All three of these DSC-compatible interfaces are natively supported by Freescale's Codewarrior 10.2. More information on the Cyclone MAX, USB Multilink Universal, USB Multilink Universal FX, and compatible software is available at www.pemicro.com.

 





BOSTON – Feb. 28th, 2012 - P&E Microcomputer Systems Inc., an industry trendsetter in hardware and software development tools for Freescale microcontrollers, is introducing a series of hardware and software development tools that support Freescale’s new S12ZVM device family. This support includes a sub-$1000 trace interface, low-cost development interfaces, debug and programming software, and production programming equipment.

Read more...




PEmicro presented its new USB Multilink Universal, an ALL-IN-ONE development interface, at the recent Freescale Momentum conference. The revolutionary ALL-IN-ONE interface concept was very well received by conference attendees. USB Multilink Universal is a single interface that supports Freescale’s HCS08, RS08, HC(S)12(X), Coldfire V1/+V1/V2-V4, Qorivva MPC55xx/56xx, and Kinetis ARM microcontrollers. Thus, it eliminates the need to purchase different hardware interfaces to support specific devices that belong to those MCU families.

    P&E also previewed two upcoming products: the USB Multilink Universal FX and Tracelink. The USB Multilink Universal FX is an enhanced, very high-speed version of the USB Multilink Universal. The Tracelink interface will support trace capture for 32 bit Freescale device architectures.

New! Follow us on Twitter at twitter.com/pemicro!  





PEmicro has released its groundbreaking new USB Multilink Universal all-in-one interface. The USB Multilink Universal is an economical, reliable USB-to-target interface that uses multiple headers to support Freescale's HCS08, RS08, HC(S)12(X), ColdFire V1/+V1 & V2-4, Qorivva MPC55xx/56xx, and Kinetis ARM microcontrollers. The USB Multilink Universal includes multiple ribbon cables to allow connections to the various supported devices. The USB Multilink Universal's case simply flips open for easy access to the headers.

It is supported by P&E software, in addition to Freescale's Codewarrior and software from other third party vendors. A configuration utility is available on P&E's website which allows configuration of the USB Multilink Universal for use with older software packages.

P&E is also developing the USB Multilink Universal FX, an enhanced, high-speed version of the USB Multilink Universal interface. 





For users of our Cyclone for Renesas stand-alone programmer, we've made our library of programming algorithms for supported Renesas devices available for download here. As always, if you do not see the algorithm you need for a supported device, you can use this link to request a custom algorithm. The Cyclone for Renesas currently supports the H8, R8C, and M16C families.  





Freescale offers certain development boards with an integrated debug circuit based on Open Source BDM. The Open Source BDM circuit design is an open source, community-driven design. It has been published on Freescale's website, and full documentation can be found in the Community Forums.

P&E Microcomputer Systems has released a free utility that allows the user to upgrade the firmware on the current JM60-OSBDM development board design. The utility may be downloaded at: www.pemicro.com/osbdm

P&E's USB Multilink (part# USB-ML-12E) hardware interface is required to perform this firmware update.  The process of updating the firmware via this utility is very simple. Please follow these steps:

1. Plug the USB Multilink into the 6-pin BDM header for a JM60 device in the OSBDM design.

2. Click the "Select" button to browse for the firmware file that you would like to download to the OSBDM design.

3. Click the "Update Firmware" button to complete the firmware update.

 

New! Follow us on Twitter at twitter.com/pemicro!





P&E is pleased to announce that 64-bit Windows support has arrived, including support for Windows 7. P&E software has been upgraded to work under Windows 7 (and other Windows 64-bit operating systems) by using the latest version of our drivers - P&E Hardware Interface Drivers 10. There is no need to worry about P&E software compatibility if you're migrating to a Windows 64-bit OS at home or in the office. 

Read more...




We're pleased to announce the release of our latest device drivers. This update includes support for Microsoft Windows XP, Vista, and Windows 7 Operating Systems for both 32-bit and 64-bit architectures, as well as some minor bug fixes.

To get started using the drivers:

  1.     Download P&E Hardware Interface Drivers 10
  2.     Run the file drivers_10_install.exe. If you have an older version of our drivers installed, the setup will automatically perform the update.

NOTE: The latest drivers no longer include support for Windows 98 and ME, but P&E will continue to make our older drivers available. Support for PCI devices (e.g., BDM Lightning) and Parallel port devices has been removed for Windows Vista and later, as well as all 64-bit operating systems.

P&E drivers allow P&E applications to communicate with P&E hardware via the parallel port, PCI bus, Ethernet, Serial, and USB.






P&E Microcomputer Systems INSIDER
 Since 1980, P&E Microcomputer Systems has been providing industry leading hardware and software development tools for the microcontroller industry. 

November 2009

IN THIS ISSUE
 P&E Launches Cyclone Programmer For Renesas Devices
FEATURES
FAQs
Get Help
Buy at P&E 
RESOURCES
P&E Website


 P&E Launches Cyclone Programmer For Renesas Devices
 
 The power of P&E's Cyclone programmers is now available for Renesas! P&E's Cyclone for Renesas is a flexible, affordable in-circuit flash programming solution for Renesas devices that excels in a demanding production environment. After configuration, operation is as simple as one touch

 The Cyclone for Renesas includes these features:

  
Support is currently available for the R8C, M16C, and H8 families. A complete listing of supported devices is available here. Please contact us for information about support for other devices. 

 

 
LCD Menu Display
LCD Menu Display The Cyclone for Renesas includes an extremely useful LCD Menu Display that greatly enhances the Cyclone's stand-alone capabilities. The LCD Menu Display allows the user to:
 
  •  
    • Configure the Cyclone without a PC 
     
    • Quickly view and select from multiple programming images 
     
    • Easily perform programming operations in stand-alone mode 
     
    • Get direct feedback about programming results 
     
  

 
Multiple Image Support
 No need to swap programming images! The internal memory of the Cyclone for Renesas manages multiple images. Load several different programming images onto the Cyclone and choose between them using either the PC software or the LCD Menu on the unit itself. The Cyclone's memory can also be expanded with optional CompactFlash activation. Multiple Cyclone Images

 
Control Multiple Cyclones
Control Multiple Cyclones Automation can yield a big increase in productivity. P&E includes software with the Cyclone for Renesas that allows the user to automate control of a single Cyclone via a command-line executable or a .dll. 

NOW AVAILABLE  - P&E has introduced the Cyclone Automated Control Package, which allows users to manage multiple Cyclones simultaneously. Any supported devices can be programmed in parallel, even if they are different devices with different data.

Please visit P&E's website for information on the Cyclone Automated Control Package (available separately). 


 
Optional CompactFlash Support
 Expand the memory of your Cyclone for Renesas with P&E's new Compact Flash support. Store more images and larger images while adding flexibility and efficiency by reducing your need to be connected to the PC. 

P&E's new CompactFlash Activation License activates the Manage Images Utility on the Cyclone interface so that it can be used with CompactFlash cards. 

CompactFlash
 







This video gives a demonstration of how to load a programming image onto a CompactFlash card in the expansion port of P&E's Cyclone products. CompactFlash activation is a powerful feature that lets users expand the memory and versatility of their Cyclone:

 





Overview

PEmicro’s Cyclone PRO/MAX Stand Alone Programmers offer an impressive array of capabilities such as in-circuit flash programming, stand-alone programming, and as much as 7MB internal non-volatile memory for storing programming images. And now this memory space can be expanded via optional software which enables the Cyclones’ CompactFlash interface. The expanded storage feature simplifies management of Stand-Alone Programming images. This Expert’s Corner explains how to take advantage of the CompactFlash card feature to facilitate the Stand-Alone Programming process.

Read more...




P&E engineer Edison Tam demonstrates how to program Freescale's QE128 with P&E's Cyclone PRO stand-alone automated programmer, and gives an overview of the development and production capabilities of the Cyclone PRO. To learn more, please visit the Cyclone PRO product page:

 

Read more...




P&E Microcomputer Systems has expanded its line of UNIT Library Interface Routines by adding a new version that supports Freescale's RS08 microcontroller family. P&E's UNIT Libraries allow the user to create custom Windows applications that can fully control an RS08 processor using either P&E's Cyclone PRO (Rev. C) or USB-ML-12 (Rev. C)  interfaces. It also supports P&E's DEMO9RS08LA8, DEMO9RS08LE4, and DEMO9RS08KB12 development boards, available through Freescale.

The UNIT libraries are frequently used to build custom production line testers. The libraries allow applications to peek and poke memory, peripherals, and other resources of the processor by using P&E interfaces to access the debug port. With these abilities, the application can perform tests of the target hardware, calculate target calibration data, or simply control the target using debug mode. 

More information about P&E's UNIT Interface Library Routines for the RS08 can be found at P&E's website.

 





PEmicro's flash programming software PROG12Z now supports the Freescale MC9S12XE family of microcontrollers. 

The MC9S12XE family of microcontrollers comes with unique flash memory called D-Flash that can be allocated for Emulated EEPROM (EEE)  which mimics the small sector size and endurance of real eeprom. Before you can program the D-Flash or EEE, the D-Flash must be configured with the "Full Partition" command PROG12Z. This article discusses how to program the D-Flash of MC9S12XE100 using PROG12Z. The P-Flash does not support the allocation of EEE and therefore does not require partitioning.

Overview

The size of the D-Flash on the MC9S12XE can be up to 32KB or 128 sectors of 256 bytes each. You can allocate up to 4KB or 16 pages of 256 bytes each  to be used for EEE. Please see Freescale application note AN3490 for a more detailed overview of the EEE implementation. There are two  parameters that control how the software configures the memory: DFPART and ERPART.

DFPART = Number of D-Flash sectors reserved as User D-flash (128 total)

ERPART = Number of pages reserved for EEE (16 total)

The two parameters are required to meet two size conditions to be valid:

1. (128-DFPART) / ERPART >= 8

2. (128-DFPART) >= 12 if ERPART==1

The following table shows how the flash memory can be allocated towards D-Flash and EEE. The arrows indicate that any number in that range is a valid amount of sectors for D-Flash. DFPART and ERPART are in hexadecimal notation.

Programming

Open Prog12z and connect to the target board. After entering background mode, the software will prompt you for an algorithm. There are two seperate algorithms for D-Flash and EEE. The D-Flash algorithm is "Freescale_9S12XEP100_1x16xmax16k_max32k_Linear_User_Dflash.12P". The EEE algorithm is "Freescale_9S12XEP100_1x16xmax2k_max4K_EEPROM_linear_1k_page.12P".

Lets choose the algorithm for D-Flash. After selecting your S19 file and before programming, execute the Full Partition (FP) command. The software will prompt you to enter a value in hexadecimal that is the combination of DFPART and ERPART parameters. 

Examples:

"8000" - Enables 128 sectors (32 KB) of D-Flash and 0 pages of EEE 

"200C" - Enables 32 sectors (8 KB) of D-Flash and 12 pages (3 KB) of EEE

"100C" - Enables 16 sectors (4 KB) of D-Flash and 12 pages (3 KB) of EEE

"0010" - Enables 0 sectors of D-Flash and 16 pages (4 KB) of EEE 

When you want to program the EEE, you should choose the algorithm for EEE. You do not need to run the Full Partition command again unless you want to change the memory configuration. Note that setting up the memory configuration using the FP command will erase all the contents of both D-Flash and EEE.  If you get the error message "Started. Error during .12P specified function.", you have entered an invalid value.

Reading

The D-Flash begins at 0x100000. If all your memory is allocated towards D-Flash only, execute the Upload Module (UM) command to dump the memory to a S19 file. UM reads the entire flash regardless of how it was partitioned. If there is D-Flash and EEE, execute the Upload Range (UR) command instead. For example, if there is 8 KB of D-Flash, then upload the range 0x100000 to 0x101FFF.

 





 Systems that use memory-mapped external flash require special considerations from a programming perspective. Because there are so many variables, questions about external flash are among the most common types of technical support inquiries that we receive. In this article, we provide an overview of how the PEmicro PROG software handles external flash and offer some tips to help debug a system.  The examples in this article relate to Freescale ColdFire devices, but the concepts can be applied to most microprocessor systems.


Hardware connections
The following is the minimum set of signals required to access a memory-mapped external flash:

A[X:0] – Address signals
D[Y:0] – Data signals
CS – Chip Select
WE or R/W – Write Enable
OE – Output Enable

How PROG works
PEmicro’s PROG software forces the processor into background (or "debug") mode, where it gains full access to the processor’s resources. The flash programming algorithm is then loaded into the processor’s RAM. The algorithm contains all of the routines necessary to erase and program the external flash.

PROG always moves the external flash so that it begins at address 0 for programming. If your own memory map is different, PROG will need to account for this with the correct base address

Accessing the external flash
The PROG software uses the processor to access the external flash. This means that from the processor’s perspective, it must be able to read and write to the external flash. Usually, this is all handled by the processor’s external bus interface. Most of the external flash algorithms provided by PEmicro assume that this configuration is already handled by the user.

For example, most processors automatically start up with CS0 as the global chip select. The processor uses this chip select for all external memory accesses until it is reconfigured by the user. Likewise, the processor checks certain signals during bootup to determine the width of the data bus on CS0.

Extra initialization
Depending on the processor and external flash used, there may be some extra initialization that is not automatically performed by the processor on bootup, but is necessary before flash programming can take place. Users may perform this extra initialization by adding commands to the beginning of the algorithm itself. The algorithms may be edited with a simple text editor such as Notepad. Refer to the PROG help file for more detailed information on these commands.

Some examples:

1) Processor’s internal SRAM needs to be enabled, because it is disabled at bootup
NO_ON_CHIP_RAM
CONTROL=80000001/0C05/             ;set up rambar to place ram at $80000000

2) Processor has a software watchdog that needs to be disabled
WRITE_WORD=0000/40140000/          ;kill extra sw watchdog

3) External bus interface is not properly configured after bootup
WRITE_WORD=0000/40000080/       ;CSAR0 - CS0 at address 0
WRITE_LONG=00000101/40000084/       ;CSMR0 - Enable CS0
WRITE_WORD=3D80/4000008A/       ;CSCR0 16-bit data bus

Troubleshooting
- Make sure you are using the correct algorithm. Please refer to this previous blog post for more information about algorithm selection.
- Double check hardware connections between the processor and the external flash.
- Check if the processor is actually able to access the external flash. The PROG software has a command called “Show Module” which will attempt to read the contents of the flash. If the data is displayed as XX, then the processor was unable to read the external flash.
-  If the hardware connections are good but the processor’s external bus configuration needs tweaking, a debugger will allow you to check the processor’s settings on bootup to make sure they match up with the external flash.





P&E has updated its Cyclone PRO Image Creation Utility to provide a way for users to set a custom trim frequency for HCS08, RS08, and CFV1 devices that have an internal reference clock. To use this feature, the user must first select a programming algorithm, because not all devices have the same maximum and minimum internal reference clock frequencies.

Once the programming algorithm has been selected, the utility will determine the allowed frequency range from which the user can choose. The user also has the option of enabling or disabling this feature. When it is enabled, the user can input a desired frequency. If the user does not enable this feature and input a frequency, or if this feature is disabled, the utility will simply select the default trim frequency as specified in the device reference manual.

Please note that this feature is only effective if the "PT ; Program Trim" command is included in the programming sequence. This custom trim feature in the updated Cyclone PRO Image Creation Utility is similar to the one available in CodeWarrior for Microcontrollers (RS08/HC(S)08/ColdFire V1).

To download the latest updates, please visit our Cyclone PRO product page.

 

 





PEmicro’s PROG programming software will sometimes prompt the user to enter a “Base Address”. In this article, we discuss what the base address is and why it exists.

On most 8-bit and 16-bit processors, the internal flash/eeprom is located at fixed address locations. If this is the case, the associated programming algorithm will NOT prompt the user for a base address, since the address is fixed and already known.

On 32-bit processors and any systems using external flash, the address of the flash may be configured to reside anywhere within the processor’s address space. The developer will decide on an appropriate memory map early in the design process.

For these situations where the flash can be relocated, the PROG software will always move the flash so that it begins at address 0.  However, the developer may not have an object file that matches this new memory mapping. To account for this, the “Base Address” (specified by the user) is subtracted from all addresses in the object file prior to programming.

Below is an example of how the developer’s memory map may differ from the one in PROG. Although the external flash is located at different addresses, it refers to the same physical memory. Here, the user would specify a base address of FFC00000.

The base address should always be the starting address of flash in the developer’s memory map, and not the “first” address where data exists (although in most cases they are the same!)





P&E's Cyclone PRO makes it very simple to program both the Flash and EEPROM on your HC(S)12(X) device.  There is a unique algorithm for each device and the type of memory, so the first step is to determine the correct algorithm for your setup.  A list of all of our algorithms is located here.  If you need help indentifying the correct algorithm, please refer to our previous post, Choosing The Right Programming Algorithm.

The following is a demonstration of how to program the 9S12DP256B microcontroller with P&E's Cyclone PRO,  first in Interactive and then in Stand-Alone mode. 

The 9S12DP256B has 4KB of EEPROM and 256KB (4 blocks of 64KB) Flash, so the algorithm files that you are need are:

Freescale_9S12DP256B_1x16x2k_4k_EEPROM.12P - Internal EEPROM algortihm

Freescale_9S12DP256B_1x16x128k_256k_Linear_16k_page.12P - Internal Flash algorithm

You can place your code for EEPROM and Flash in seperate S-Record files or combine it into one.  The P&E programming software will ignore any addresses in the S-Record that are out of memory range.  Note that Freescale's Codewarrior Develoopment Kit automatically outputs an S-Record file and PHY file that contain both the Flash and EEPROM code.  You can load the PHY file directly with either algorithm for programming.

INTERACTIVE MODE

When using the Cyclone PRO in Interactive Mode, open up the CyclonePro_PROG12Z Flash programming software and connect to the target board. 

1. Load Freescale_9S12DP256B_1x16x2k_4k_EEPROM.12P with the "CM" command.
2. Specify S-record that you want to program with the "SS" command. 
3. Erase the EEPROM with the "EM" command.
4. Program the EEPROM with the "PM" command
5. Verify the EEPROM with the "VM" command       
6. Load Freescale_9S12DP256B_1x16x128k_256k_Linear_16k_page.12P with the "CM" command
7. Erase the Flash with the "EM" command.
8. Program the Flash with the "PM" command
9. Verify the Flash with the "VM" command       

 

STANDALONE MODE

If you're using the Cyclone in Stand-Alone mode you'll need to configure the following programming sequence in the Cyclone PRO Image Creation Utility.  If you don't have this utility, you can download the software here

CM Freescale_9S12DP256B_1x16x2k_4k_EEPROM.12P
SS DP256.PHY
EM
PM
VM
CM Freescale_9S12DP256B_1x16x128k_256k_Linear_16k_page.12P
EM
PM
VM





When you need to convert between object file formats, download one of P&E's free, C language development kits.  These kits include a full GNU compiler toolchain, including Binutils OBJCOPY.

Download PKGPPCNEXUS Starter Edition
http://www.pemicro.com/downloads/download_file.cfm?download_id=194

Download PKGCFZ_PRO Starter Edition
http://www.pemicro.com/downloads/download_file.cfm?download_id=180

P&E's ICD In-circuit Debugger and PROG Flash Programmer software, included with the Starter Editions, natively supports several object file formats, including s-record and ELF.  Soon, P&E software will natively support Intel Hexadecimal files.

After installing one of the Starter Editions, run OBJCOPY from the Windows command-line.  The program is located in the gnuin subdirectory within the installation directory.  View the help screen for OBJCOPY from the command-line by typing  "powerpc-eabispe-objcopy" or "m68k-elf-objcopy".  You will see a list of all program options.  To determine which formats are available with OBJCOPY, take note of the final lines of the help screen.  You will use these format names, BFD names, when running OBJCOPY.

To convert a file, use the  "-O" option followed by the name of the desired output format.  The input format may be specified with the "-I" option, though this is often unnecessary.   For example, to convert the object data in a COFF file "file1.coff" to an s-record file "file1.srec":

m68k-elf-objcopy -I coff-m68k -O srec file1.coff file1.srec

or

powerpc-eabispe-objcopy -I aixcoff-rs6000 -O srec file1.coff file1.srec

If you are looking for greater control of file conversion, look at the options on the OBJCOPY help screen.  For example, with powerpc-eabispe-objcopy you may specify s-record length, force S3 records, and manipulate the linker sections in object files.



by Johnny Ng


When using PEmicro's PROG family of programming software, it's necessary to specify the correct programming algorithm to match your hardware setup. Because PEmicro provides thousands of different programming algorithms this can seem like a duanting task. In this article we discuss how to quickly determine the programming algorithm that correctly matches a specific hardware setup.

Read more...




Did you know that the Freescale Codewarrior IDE includes an option that allows you to program flash with more flexibility? This option is called “Expert Mode."

Expert Mode provides a set of general interface functions which are used to control the erasing, verifying, programming and viewing of modules to be programmed and provides the flexibility of choosing your own flash programming algorithm and program/erase ranges in your module within the IDE.

To access this feature, follow these steps:

  1. Start the Freescale CodeWarrior IDE
  2. Create your project or use an existing one.
  3. Make sure the connection type is set to “P&E Multilink/Cyclone Pro” and your target is connected.
  4. Start the Debug session and interface with the target.
  5. Inside the real-time debugger, navigate to “MultilinkCyclonePro” ==> “Start Expert Mode Programmer…” and select this option.

This will allow you to access features that are normally available to you in P&E's PROG flash programming software. This option is available in CodeWarrior 6.2 for the HCS08 and RS08 architecture and allows the Cyclone PRO to be used for interactive programming.

To find full documentation of our software for your device, please visit:

http://www.pemicro.com/support/downloads_find.cfm

and select the specific PROG that you are using.





BOSTON, MA - P&E announced the launch of CompactFlash support for its Cyclone PRO, Cyclone MAX, and Cyclone for Renesas products. This support is available in the form of a CompactFlash Activation License - a license key which activates software included with the Cyclones. This enables the appropriate software to make use of the CompactFlash card port of P&E's Cyclone devices.

Use of the CompactFlash interface allows for programming of larger datasets, and for the storage of multiple programming images on the CompactFlash card. It also enables faster, easier, and more flexible programming of data during field updates or on production runs.

More information is available on the CompactFlash Activation License product page at www.pemicro.com.

 





Cyclone ACP, Rev. CNOTE: For  CYCLONE and CYCLONE FX programmers, the Cyclone Automated Control Package has been replaced by the Cyclone Control Suite. The Classic Cyclone Automated Control Package will remain available but not updated.

PEmicro’s product line of Cyclone stand-alone programmers provides a fast, robust, and automated solution for production-scale programming of microprocessors. However, production facilities may desire an even higher level of automation than the single-button touch capability that is offered by the Cyclone. PEmicro offers several means of automating control, including a command-line executable, UDP/Serial communications, or the .DLL included in PEmicro's new Cyclone Automated Control Software Package. In this article, we discuss automated control using the automated control package and the unprecedented level of power and flexibility that it offers.


Read more...




Did you ever wonder how to power cycle your device to force it into Background Debug Mode? Are you trying to eliminate an external power supply from your manufacturing setup? You can accomplish either task by using a Cyclone PRO. Using the Cyclone PRO's internal power generation mechanism, you can control power for any HC08/HCS08/RS08/HC(S)12 device.

In fact, controlling the power through a Cyclone PRO is crucial for HCS08/RS08 device applications which may not have a dedicated RESET pin. This is because power cycling the device is necessary in order to fully automate the FLASH programming procedure.

To configure a Cyclone PRO to provide power to pin 6 of the BDM header, set power jumpers 2, 3 and 4 on the side of the Cyclone unit. To provide power to pin 15 of the 16-pin MON08 header, set power jumpers 1, 2 and 3. Once the power jumpers are set, select "Provide Power to Target" from the Connection Assistant and/or Cyclone Image Creation Utility and the Cyclone PRO will take care of the rest. You can choose between 5V, 3V and 2V levels.


The Cyclone PRO is also able to toggle power for most high-power/high-voltage devices. The internal electromechanical relays can handle power supplies with a maximum switched current of 1A and a maximum switched voltage of up to 30VDC. In order to automate power cycling with an external power supply, insert it into the Cyclone's "Target Power In" jack. Use the power cord that's included in the Cyclone PRO kit to connect the output of the Cyclone's "Target Power Out" jack to the power input of your board. Then be sure to set power jumper 5 on the side of the Cyclone unit, leaving jumpers 1, 2, 3 and 4 un-populated.

To learn more about Cylcone power management options, please download our Cyclone PRO User's Manual.





Today's tip concerns P&E's Cyclone automated programmers. We've noticed that on rare occasions some users have observed that although a "PT" (program trim) command has been specified in the SAP programming sequence, the trim value is not programmed.

By working closely with Cyclone users, we've discovered that the issue is not that the Cyclone receives the command and fails to program the trim value to the target, but rather the PT operation was accidentally pre-empted by the user. How could this happen if the operation is configured in the Cyclone and all a user needs to do is wait for the operations to finish? The problem lies in the "wait for the operations to finish" portion of the sequence.

A stand-alone operation typically uses the following sequence:

CM algorithm_file

SS user_srecord

EM

BM

PM

VM

VC

PT

with PT being the last command in the sequence.

In a labor-intensive manual production environment, it is possible that a user may mistakenly terminate the sequence when he sees the "verification" LED or LCD display, thus ending the operation prematurely,  when in fact there is one more "PT" command yet to be executed.

To remedy this potential issue we recommend a slightly modified SAP sequence, which will not affect anything under normal conditions, but will help prevent human error. The sequence is as follows:

CM algorithm_file

SS user_srecord

EM

BM

PT

PM

VM

VC

As you can see, the "PT" command now occurs before the verifications begins. By putting the "PT" command ahead of the "PM" command, it also becomes an extra check for the trim value... if a valid trim value is not calculated, the Cyclone will not program the target.

 

 

 





In a previous post, we showed how to use PKGPPCNEXUS and  PKGCFZ_PRO to display the contents of an ELF/DWARF file using Readelf.  In this post, we look at the Readelf output and explain its description of your object code.

We will use this example Readelf output to illustrate the kinds of information that Readelf provides.

The first item of interest is labeled "Entry point address". This is the address of the first instruction executed after reset. Your compiler or linker determines this value. The PEmicro debugger optionally uses the entry point address to execute your target application.

The "Section Headers" portion lists all of your linker sections that made it to your ELF/DWARF file. The ".debug_info" section is where ICD looks for the debugging information entries. Note that not all of these sections contribute to the application memory map.

The portions titled "Program Headers" and "Section to Segment mapping" describe the application memory map. ICD and PROG use the program headers to determine where to place object code on your target. Check that a linker section is included in the final memory map by examining the section to segment mapping. Note that the first entry in the program headers corresponds to the first entry in the section to segment mapping.

From the program headers, you can gather the following information about the memory map:
Type - Only LOAD types contribute to the final memory image
VirtAddr - load time location of code
MemSiz - number of bytes that the code segment occupies in the final memory image

PEmicro's PROG and ICD software support an uncommon feature of the GNU compiler.  GCC uses both the program header VirtAddr and PhysAddr fields, the former for run time address and the latter for load time address.  For more information on this useful feature, please refer to this document.





When using either a Cyclone PRO or a Cyclone MAX, customers often ask whether programming a target through Ethernet is faster than USB or vice versa.  While it's certainly true that the transfer time of data from the PC to the Cyclone occurs faster over an Ethernet link, the actual programming time is bottlenecked by the BDM Shift Frequency.

BDM Shift Frequency refers to the rate at which signals are handshaked (shifted) from one of the interface ports of a Cyclone unit to the Background Debug port of the target unit.  This handshake can occur synchronously or asynchronously, the former requiring the presence of a clock source (note that some ColdFire devices such as the MCF5272 require a synchronous interface), and may also require a power cycle sequence as part of entry into background mode, which is performed automatically by the Cyclone PRO.

BDM Shift Frequency directly reflects the operating clock frequency of the device.  For example, a ColdFire processor operating at 200 MHz will support a much faster BDM Shift Frequency than the same processor would if operated at a slower speed of 50 MHz.  Because processors can be configured to operate at different frequencies given an identical clock source, we take advantage of this and programmatically put the processor into a faster gear when possible by configuring the appropriate PLL entries from our programming algorithm.  

How fast can the BDM Shift Frequency be?  The answer isn't uniform across all processors and can be found in each processor’s specific user’s manual.  However, the rule of thumb is to use a value which is at most one-fifth of the bus clock frequency of the device, while keeping in mind all pertinent signal integrity issues and using proper cable length for connection to devices which operate faster than 100 MHz (see earlier post regarding cable length).

In short, whether using Ethernet or USB, or even in Stand-alone mode, all programming times are ultimately bounded by the BDM Shift Frequency that you select.  It often pays to experiment to identify the fastest BDM Shift frequency, given the guidelines above, and to select the rate for the fastest programming times.





P&E offers an easy and reliable way to control a Cyclone PRO via the built-in RS232 protocol. If you would like to follow along with our example, please pre-program your Cyclone PRO with a stand-alone image and configure your RS232 host device to operate at an 115200 baud rate, 8 data bits, no parity and 1 stop bit mode. You are now ready to enjoy the flexibility of controlling your Cyclone PRO by sending it a pre-defined set of byte strings. These commands cover full range of Cyclone PRO functionality, beginning with Executing All Commands of an Image (Same as Pressing the "Start" button) and ending with Dynamically Programming Data to Target.

In order to ensure that a given command reaches the Cyclone PRO without getting corrupted, each command is concluded by a CRC8 byte. Below is the command structure that should be followed every time the RS232 command is sent: [LENGTH] [COMMAND TYPE] [COMMAND ID] [PARAMETERS] [CRC8]. The user should calculate CRC8 and append it to all commands that are sent from a host system to a Cyclone PRO.

Let's go through a step-by-step example of CRC8 calculation for Execute All command:

The command consists of 4 bytes that include the CRC of $88: $03 $18 $11 $88.

Given an array of pre-calculated CRC values of:

const    crc8tab : array[0..255] of WORD = (
            $00,$07,$0E,$09,$1C,$1B,$12,$15,$38,$3F,$36,$31,$24,$23,$2A,$2D,
            $70,$77,$7E,$79,$6C,$6B,$62,$65,$48,$4F,$46,$41,$54,$53,$5A,$5D,
            $E0,$E7,$EE,$E9,$FC,$FB,$F2,$F5,$D8,$DF,$D6,$D1,$C4,$C3,$CA,$CD,
            $90,$97,$9E,$99,$8C,$8B,$82,$85,$A8,$AF,$A6,$A1,$B4,$B3,$BA,$BD,
            $C7,$C0,$C9,$CE,$DB,$DC,$D5,$D2,$FF,$F8,$F1,$F6,$E3,$E4,$ED,$EA,
            $B7,$B0,$B9,$BE,$AB,$AC,$A5,$A2,$8F,$88,$81,$86,$93,$94,$9D,$9A,
            $27,$20,$29,$2E,$3B,$3C,$35,$32,$1F,$18,$11,$16,$03,$04,$0D,$0A,
            $57,$50,$59,$5E,$4B,$4C,$45,$42,$6F,$68,$61,$66,$73,$74,$7D,$7A,
            $89,$8E,$87,$80,$95,$92,$9B,$9C,$B1,$B6,$BF,$B8,$AD,$AA,$A3,$A4,
            $F9,$FE,$F7,$F0,$E5,$E2,$EB,$EC,$C1,$C6,$CF,$C8,$DD,$DA,$D3,$D4,
            $69,$6E,$67,$60,$75,$72,$7B,$7C,$51,$56,$5F,$58,$4D,$4A,$43,$44,
            $19,$1E,$17,$10,$05,$02,$0B,$0C,$21,$26,$2F,$28,$3D,$3A,$33,$34,
            $4E,$49,$40,$47,$52,$55,$5C,$5B,$76,$71,$78,$7F,$6A,$6D,$64,$63,
            $3E,$39,$30,$37,$22,$25,$2C,$2B,$06,$01,$08,$0F,$1A,$1D,$14,$13,
            $AE,$A9,$A0,$A7,$B2,$B5,$BC,$BB,$96,$91,$98,$9F,$8A,$8D,$84,$83,
            $DE,$D9,$D0,$D7,$C2,$C5,$CC,$CB,$E6,$E1,$E8,$EF,$FA,$FD,$F4,$F3);

the following function should be executed with the initial CRC variable initialized to 0.

procedure ArrayCRC8(const a: array of byte; const len : byte; var crc: byte);
var
  i : byte;
begin
     for i := 0 to (len-1) do
         crc := crc8tab[crc xor a[i]];
end;

The first byte in the command representing its length should be omitted from CRC calculation.

Step 1: 0 xor $18 = $18. Retrieve CRC value from 24th location in our lookup table

                                 crc8tab[$18] = $48

Step 2: $48 xor $11 = $59. Retrieve CRC value from 89th location in our lookup table

                                    crc8tab[$59] = $88

Append the calculated CRC8 value of $88 to the end of your command to validate the correctness of the transmission.

 

 

 

 

 



by Updated by Johnny Ng


Did you know you can safeguard data while erasing your Flash/EEPROM module during programming? PEmicro has added a “preserve range” function that can be used in a programming algorithm to preserve memory ranges. The function looks at the range to be preserved, saves it, and restores it after the Flash/EEPROM has been erased. The user can easily preserve code segments stored in flash with a couple of modifications to the header of the programming algorithm.

A flash programming algorithm is a text file which describes how a particular flash block is to be programmed. The algorithm contains a configuration section as well as some s-record data which implements the programming process. User's commonly will modify the configuration section to change the behavior of the programming algorithm, such as to add ranges of data to preserve.

Flash algorithms describe flash blocks as having either a fixed address (common for internal flash on a microcontroller) or a variable address (common for flash chips external to a microprocessor). Algorithms which do not have a fixed address for the flash will prompt the user for the base address of the flash at the time of programming. In either case, the algorithm can be used to specify ranges of flash to preserve relative to the start of the flash block.

For an algorithm with a fixed address for the flash block, the following line will indicate the flash block location:

NO_BASE_ADDRESS=NNNNNNNN/     ; NNNNNNNN is a Hexadecimal value indicating the start of flash

Do not modify the NO_BASE_ADDRESS line! You are simply going to add some lines after it which indicate that you wish to preserve certain ranges relative to the base address. The configuration line(s) you should add directly after the NO_BASE_ADDRESS line should have the following format (very strictly formatted - no spaces allowed and include all forward slashes):

PRESERVE_RANGE=SSSSSSSS/EEEEEEEE/     ; SSSSSSSS is the starting offset, EEEEEEEE is ending offset

Adding this line would preserve the following memory range : NNNNNNNN+SSSSSSSS to NNNNNNNN+EEEEEEEE.

Example:

If there was an algorithm which was designed to program a flash block with address range $4000-$FFFF, you would see the following configuration in the flash algorithm:

NO_BASE_ADDRESS=00004000/         ;Fixed at $4000
ADDR_RANGE=00000000/0000BFFF/00/FFFFFFC0/FFFFFE00/     ; $4000-$FFFF

 

Do not modify these lines! If you wanted to preserve a certain memory range, you would specify it after the line with the NO_BASE_ADDRESS command (which sets the base address) and before the lines with ADDR_RANGE. If you wanted to preserve the memory from address $F000-$F001, you would add the bolded line as follows:

NO_BASE_ADDRESS=00004000/         ;Fixed at $4000
PRESERVE_RANGE=0000B000/0000B001/     ; Preserve $0000F000-$0000F001
ADDR_RANGE=00000000/0000BFFF/00/FFFFFFC0/FFFFFE00/     ; $4000-$FFFF

Note that the preserve_range command requires the offset from the base address of your memory. If you add $4000 to $B000 and $B001, you have $F000 and $F001.

In addition, this functionality does not limit the user to preserving only 1 range or one address. The function can be called several times in the algorithm if several ranges and/or addresses need to be preserved, or if the Flash/EEPROM is segmented into several fields or extended into pages.

Example:

For the flash block above (from $4000 to $FFFF), if the user wished to preserve addresses $5001, $5006 and ranges $CCAA-$CCBB and $D123-$DFFF, the following segment would be added to the algorithm:

NO_BASE_ADDRESS=00004000/         ;Fixed at $4000
PRESERVE_RANGE=00001001/00001001/    ; 5001-4000
PRESERVE_RANGE=00001006/00001006/    ; 5006-4000
PRESERVE_RANGE=00008CAA/00008CBB/    ; CCAA-4000/CCBB-4000
PRESERVE_RANGE=00009123/00009FFF/    ; D123-4000/DFFF-4000
ADDR_RANGE=00000000/0000BFFF/00/FFFFFFC0/FFFFFE00/     ; $4000-$FFFF

Example:

It is also possible to preserve several different segments across different pages of Flash/EEPROM. The user should know how to access each page of memory logically in the software. Let's look at the HCS08 AC128. The paged Flash memory can be accessed with the following ranges. This will typcially be described in the configuration section of the programming algorithm.

$08000-$0BFFF --> Page 0
$18000-$1BFFF --> Page 1
$28000-$2BFFF --> Page 2 
$38000-$3BFFF --> Page 3 
etc.

If the user wanted to preserve memory on page 0 from $08000-$08005 and on page 3 from $38000-$38005, he would add the following commands :

NO_BASE_ADDRESS=000020F0/         ;Fixed at $20F0
PRESERVE_RANGE=00005F10/00005F15/    ; Preserve $08000-$08005
PRESERVE_RANGE=00035F10/00035F15/    ; Preserve $38000-$38005
ADDR_RANGE=00000000/0000DF0F/00/FFFFFFC0/FFFFFE00/     ; $20F0-$FFFF

Note again that the offset $20F0 is added to the parameters of the command to calculate the correct paged memory ranges to preserve. Add $20F0 to $5F10 to get $08000 and add $20F0 to $35F10 to get $38000.  

The PROG software will report a checksum error and warn that the algorithm has been modified. This error can be ignored. If you wish to remove the warning, please use our command-line ADDCRC utility to update the checksum.


The Blank Check command will now fail because of the preserved data. Also note that the Verify Module command will ignore the addresses that are preserved when comparing memory against an S-record.


Any information which follows a semicolon (;) on a configuration line is a comment.

PEmicro can provide more a detailed specification of flash algorithm construction upon request.




The HC(S)12(X) microcontroller family uses a paged flash architecture to expand its addressable memory beyond the standard 64KB (or $0000 to $FFFF). Microcontrollers with this feature treat a 16KB block of memory from $8000 to $BFFF as a memory window.  This window allows multiple 16KB blocks to be switched into and out of program memory.  An 8-bit program page register (PPAGE) tells the microcontroller which block to read.

Read more...




Certain test procedures and production environments require the use of a cable longer than the typical 9-inch flat ribbon cable typically included with PEMicro hardware interfaces. Extending the cable length requires special considerations for signal integrity, crosstalk, and electromagnetic interference. Simply using a longer cable without understanding these topics will usually produce a setup that does not work reliably, if at all. Extending the ribbon cable should be the option only if you determine that you cannot make longer the length of the USB, Ethernet, or Serial cable that connects the PEMicro hardware interface to your PC. The cables for the communication ports already have some shielding.

If it is necessary to use a longer ribbon cable, PEMicro recommends using a shielded jacketed cable . This cable configuration is excellent at reducing crosstalk as well as minimizing electromagnetic interference from other devices. Further improvement can be obtained if the wires are also arranged in twisted pairs.

Shielded USB cables are inexpensive and easy to rework. The four wires provided can be used to create a cable for the standard 6-pin BDM header used by many NXP microcontrollers (such as the HCS08, RS08, CFV1, HCS12, and S12Z). Additional shielded USB cables can be used for other devices that require more debug pins.

Thicker wires offer less resistance to current which will reduce the voltage drop of the signal across the length of the wire. Our current 6 pin and other ribbon cables are AWG 28. Using a thicker wire (smaller AWG number) you may get some improvements in signal integrity.

In general, these guidelines should be followed for all cables between the target microcontroller and the PEMicro hardware interface:


  1. Use the shortest cable possible

     

  2. Use shielded cable configurations to reduce electrical parasitic effects

     

  3. Lower the communication frequency. For the ColdFire or Qorivva architectures, the communication frequency is controlled by the BDM Debug Shift Frequency setting. For other architectures, the communication speed is only dependent on the processor's bus frequency. Reducing the bus frequency (ie. disabling the PLL) should improve results.
The debug signals for some ColdFire devices such as the MCF5272 and MCF5206(e) have to be synchronized before reaching the microprocessor. This additional requirement must be kept in mind.

 





For time-sensitive HCS08/RS08 applications the developer often needs to trim the internal reference clock in order to generate a desired bus frequency. P&E's HCS08 and RS08 Flash Programmers provide a command called “Program Trim” that allows developers to program a pre-calculated value to the non-volatile flash locations that are reserved for storing ICSTRM and ICSSC registers. These can then be loaded at run-time.


Here’s a demonstration of how the “Program Trim” command can be used to generate a bus frequency of 8 MHz on a 9S08QE128 microcontroller. For the 9S08QE128, the “Program Trim” command will generate a value that will trim the Internal Reference Clock to 31.25 KHz with an accuracy of up to +/- 0.2%. The command will then program the generated value to 0xFFAE and 0xFFAF. We will be working with an assembly file that configures the Internal Clock Source module and toggle Port A every 20 CPU cycles.


Configuration source file:

ROMSTART equ $2080
SOPT1           equ $1802
ICSC2            equ $0039
ICSTRM         equ $003A
ICSSC            equ $003B
PTAD            equ $0000
PTADD           equ $0001


     Org ROMSTART

Main:  
     lda SOPT1
     and #$7F
     sta SOPT1    ; Disable watchdog
     
     
     lda $FFAF
     sta ICSTRM   ; Load TRIM bits from Flash and store it into ICSTRM
     
     lda ICSSC    
     and #$FE
     ora $FFAE    ; Load FTRIM bit from flash and store it into ICSSC   
     sta ICSSC   
     
     lda ICSC2
     and #$3F    ; Set BDIV to Divide DCOOUT by 1
     sta ICSC2    ; FLL factor= 512, therefore 31.25Khz*512/1=16 MHz=DCOOUT
                      ; 16MHz/2=8MHz=Bus Frequency                   
     
     mov #$ff,PTADD  ; Set all PTAD pins as outputs
     mov #$ff,PTAD    ; Set all PTA outputs as high
   Bra Loop
    

Loop:
     mov #$00,PTAD ; 4 cycles
     nop
     nop
     nop
     nop
     nop
     nop
     mov #$ff,PTAD ; 4 cycles
     nop
     nop
     jmp loop ; 4 cycles
     
     
     Org $FFFE
     dw  Main ;Reset Vector

 

After saving the above source file section as "9S08QE128_Example.asm" and assembling it, we can use PROGHCS08 to program the generated 9S08QE128_Example.s19 file into flash. The programming sequence outlined below will program our generated .S19 and the pre-calculated trim value.

CM  ; Choose module 9S08QE128.S8P
SS    ; Specify our object file 9S08QE128_Example.S19
EM  ; Erase module
BM  ; Blank check module
PM  ; Program module
VM ; Verify module
PT  ; Program Trim Value


On a power-on reset, our 9S08QE128 target will disable the watchdog, load trim values from flash and store them into their corresponding ICS registers, set the bus frequency divider to 1, and toggle PTA pins every 20 cycles. With a bus frequency of 8MHz, if we were to put a scope on any of the PTA pins, we would expect to observe a signal with a 400 KHz frequency +/-0.2% accuracy.





P&E's Cyclone programmers are sophisticated and flexible tools designed for in-circuit flash programming.  Field service updates, an important part of a field system, often occur in places where there is no access to a PC or power outlet.  However, P&E's Cyclones are lightweight, compact programmers that have been designed to operate in stand-alone mode – i.e. they can be loaded with a programming image, detached from the PC, and then be controlled via the LCD menu and control buttons. This makes it simple to update the firmware of a field system, for example. In the field, the Cyclone unit may be powered by using a Cyclone_PowerPack, which is a lightweight and compact lithium ion battery.  The combination of the Cyclone programmer and the battery pack creates a fully operational field programming setup that is lightweight, compact, and extremely portable. 

All that is required for a field update is to connect the battery-powered, pre-programmed Cyclone to the target. Flash programming occurs directly from the Cyclone image to the target by a simple touch of the Start button. Once initiated, programming launches and the on-board LCD displays the current state of the programming process. The final result, which is displayed on the LCD screen and with highly visible LEDs, clearly indicates a successful programming result.





If you use the ELF/DWARF file format with PEmicro's Programming or Debugging software, download one of our free C development kits to view the information within the ELF/DWARF file.  Use Readelf to examine your application memory map, check your linker script, determine application size, view detailed debugging information, and more.

Read more...




Did you know that P&E provides simulation for nearly the whole array of Freescale 8-bit microcontrollers (RS08/HCS08/HC08)? Simulation is  inexpensive and fast, and allows for a highly detailed look at the functionality of the simulated device. P&E Simulations include trace capabilities and are cycle-accurate (cycle accuracy allows for a low level, cycle-by-cycle analysis of the timing and general functionality of your code). Furthermore, simulation allows the seamless loading of code to the entire memory array of the processor, without the cumbersome flash burning that accompanies hardware development -- and byte by byte modification of the memory is allowed at any time.

     In addition to initial development, simulation can serve as a highly effective means of product evaluation. Evaluation of various devices via simulators can be relatively painless and inexpensive when compared to evaluating those same devices using actual hardware. In addition, our simulations are often published before the silicon is widely available, so simulation is also an excellent tool to help you stay on the cutting edge.

     Currently, P&E Simulations are available within the Codewarrior toolsuite. However, P&E will soon be releasing the Simulation Toolkit, which will include all simulations in one convenient package. Stay tuned to the P&E Newsflash for more updates on the release of this product.





DevelopmentP&E's UNIT Library Interface Routines for the 68HC16 now support the USB Multilink Interface for the 68HC16 architecture. The UNIT Library comes in the form of a DLL with example interface code for Microsoft Visual Studio as well as Borland Delphi. All the calls in the DLL are documented so that other development environments can also access the calls.

The UNIT library allows a customer to create a Windows application on the PC which directly controls the target 68HC16 processor via one of P&E's hardware interfaces (the CABLE1632 Parallel Port Interface and now additionally the USB Multilink Interface). Using the library, the Windows application can reset the 68HC16 processor, read/write memory, load code, step, run, and much more! The libary is perfect for creating test, update, and diagnostic applications.

Unit libraries are available for most all Freescale architectures. Details can be seen here.





When it comes to production programming, a lot of times one or more serial numbers are required.

P&E has developed a utility called SERIALIZE, which allows the generation of a .SER serial number description file. This graphical utility sets up a serial number which will increment according to the parameters set by the user.

For P&E interactive programmers (PROGx software), the .SER files are stored on the PC and updated every time a serial number is programmed to the target.

For Cyclone stand-alone operations, a similar mechanism has been implemented, except that the serial number structure is stored in the Cyclone's non-volatile internal FLASH memory. The .SER file is used to obtain the initial serial number. Below we'll describe how a user can take advantage of this feature in stand alone operations.

Assuming that a user only needs one serial number for his product, the following sequence of operations can be specified when he creates the SAP image:

CM Corresponding programming algorithm for his product

SS Corresponding object file for his product

EM

BM

PM

VM

CS Corresponding .SER file for his product created using the Serialize utility

PS

After storing the image on the Cyclone, a user can simply press the "START" button and watch the target be programmed with the serial number specified in the .SER file. Another press of the "START" button will program the target with the next serial number.

Multiple memory modules and multiple serial numbers can co-exist in one SAP image. The following are example scripts of two programming algorithms and three serial numbers:

CM Programming algorithm 1

SS Object file 1

EM

BM

PM

VM

CS .SER file 1

PS

CM Programming algorithm 2

SS Object file 2

EM

BM

PM

VM

CS .SER file 2

PS

CS .SER file 3

PS

Once the SAP image is stored in a Cyclone, pressing the "START" button will automatically carry out all the operations listed above in sequence. Memory module 1 will contain the serial number specified in the first .SER file. Memory module 2 will contain the serial number specified in the second .SER file, and the serial number specified by the third .SER file. Another press of the "START" button will automatically program the next serial numbers in the target.

This serialize mechanism may even be used when a user wants to program some static data to different locations without using the "PB" or "PW" commands - the user can simply create a .SER file with all constants.

Please refer to this post for more information on the Serialization utility.

 





develP&E offers a set of In-Circuit Debuggers that are packed with powerful scripting features. Whether you are stepping through a couple of lines of assembly code or debugging a C-level source, P&E's toolset can help you get the job done. P&E's In-Circuit Debuggers are designed with repeatable test and debugging procedures in mind. Therefore, the user can completely automate software tests by creating a macro script and saving the outcome in a log file. As a result, the user can avoid hours of repeatedly setting up software and firmware tests.

Here's a small demonstration of how the built in macro commands can be used to create and perform a repeatable firmware test on a 9S08AW60 processor. We'll be working with a simple assembly loop that's designed to toggle Port A every 20 CPU cycles. Please note that while the example below will be based on ICDHCS08 debugger, the same set of macro commands is present in all P&E debuggers. For a complete set of built-in macro features, please refer to the ICD COMMANDS section in the corresponding ICDxx.hlp file.

Source under test:

RAMSTART equ $70

     Org RAMSTART

Main:
     mov #$ff,$01 ; ptadd
     mov #$ff,$00 ; ptad
     
     lda #$ff
Loop:
     mov #$00,$00 ; 4 cycles
     nop
     nop
     nop
     nop
     nop
     nop
     mov #$ff,$00 ; 4 cycles
     nop
     nop
     jmp loop ; 4 cycles

The macro outlined below will load our loop_example.s19 and .map files. At the same time it will set the program counter, set the breakpoints, and initialize variables. As the code executes, it will also capture the contents of the desired registers as well as the contents of all on-screen windows. All information will in turn be stored in a log file for later comparison and analysis:

LF test_output.log  ; creates log file
HLOAD loop_example.s19  ; load an .s19 with a map file
PC Main  ; set program counter to point to the beginning of the
; code
VAR $00  ; add a variable to a variable window
VAR $01  ; add a variable to a variable window
GOTIL Loop  ; run through initialization part of the code to the loop
DUMP $00 $01  ; dump the contents of registers $00 to $01 into the log
; file
BR Loop  ; set a breakpoint at the beginning of the loop
GO ; run the code until it hits a breakpoint
SNAPSHOT ; captures the current data in all open windows and stores
; them in a log file.
LF ; close log file


To execute the above macro, enter “macro” in the command line (located on the bottom of the ICD status window). Browse to the location where your macro is saved and open the file. Please note that any built-in commands can also be executed individually. This gives the user the opportunity to perform a step-by-step test of the macro prior to starting the automated debugging procedure.





coldfire v2/3/4P&E has updated its ColdFire software products so that they no longer require use of the processor status (PST) pins on the debug connector. These pins are traditionally used to determine if the part is running in user mode or halted in debug mode. The default is still to use the PST pins for status, but this can be optionally disabled in the connection assistant. When disabled, the software will use the BDM communications pins to determine the processor status. This results in a slight slowdown in communication and download rates, but the advantage is that the target board no longer has to wire the PST signals to the debug connectors. This also alleviates some problems in the case where the customer application needs to make use of the alternate functions of the processor status pins instead of using them for debug.





P&E logoBOSTON, MA - In a continuation of its commitment to making the customer experience as helpful and comprehensive as possible, P&E has launched an enhanced, solutions-oriented website. Customers who come to P&E's website with a project in mind will now find a helpful interface designed to guide them through the process of finding the right tools for the job. This interface includes a reorganized resource page to help customers more quickly find the information they are seeking. The enhanced website also features P&E's News Stream, a blog designed to provide fresh and informative content for users, including news about new product features and tips, expert advice, and answers to frequently asked questions.    





Boston, MA - P&E Microcomputer Systems announces that it has extended the support of its PowerPC Nexus tools to include Freescale’s new MPC56XX devices. This set of in-circuit debuggers, FLASH programmers, and hardware debug interfaces now supports both MPC55xx and MPC56xx devices, offering a comprehensive solution for Freescale’s advanced automotive microprocessors.





Boston, MA - P&E Microcomputer Systems announces the release of an upgraded version of the Professional ColdFire Development Package for the Cyclone MAX and ColdFire Multilink.  The package is already a powerful and inexpensive development suite for the Freescale ColdFire MCF52xx, MCF53xx, MCF54xx microcontroller families. These tools have now been extended to include support for the ColdFire V1.  The professional package supports the GCC toolchain compiler and GNU target template projects, specifically for the ColdFire V1, and additional GNU template projects for the ColdFire V2 (MCF52xx, MCF52xxx).





Boston, MA - P&E Microcomputer Systems now offers a rechargeable Power Pack for use with the Cyclone PRO and Cyclone MAX stand-alone programmers. When powered by a lithium ion long-runtime battery, a Cyclone unit is the perfect solution for field firmware updates that require portable, stand-alone programming. The Cyclone and PowerPack are lightweight, compact, and extremely portable.





Boston, MA - P&E Microcomputer Systems’ Cyclone MAX is an extremely flexible tool designed for in-circuit flash programming, debugging, and testing of Freescale microcontrollers.  The Cyclone MAX’s architecture support has now been extended to include the PowerPC Nexus family (MPC55xx).  Architectures already supported include the ColdFire (MCF5xxx), PowerPC (MPC5xx/8xx), and ARM (MAC7xxx).





Boston, MA - P&E Microcomputer Systems publishes an API in the form of UNIT Libraries that allow third-party developers to customize interactions with microcontrollers via Serial, USB, or Ethernet ports using P&E hardware interfaces. For example, the UNIT library can be used to build custom production line testers. P&E has now expanded its offerings to include UNIT Libraries for the ColdFire V1 architecture.





Boston, MA - P&E Microcomputer Systems announces the release of the DEMOJM development board, available through Freescale. The DEMOJM is a low-cost development system that supports Freescale MC9S08JM60 and MCF51JM128 64LQFP microcontrollers. It consists of a DEMOJM Base Board, a DC9S08JM60 Daughter Card and a DC51JM128 Daughter Card. P&E’s Embedded Multilink circuitry on the DEMOJM board allows the processor connected to the DEMOJM to be powered, debugged, and programmed via USB from a PC.





Boston, MA - The ColdFire V1 professional development packages are complete, powerful, and inexpensive development suites for Freescale ColdFire 51xx family microcontrollers, including the JM and QE families. The package is now available in either a C-level or ASM Development Suite. Packages include P&E's in-circuit debugger, flash programmer, development environment, assembler, register decoder. The C-level package also includes the GCC C Compiler.  A P&E debug interface is used to connect to a standard debug connector on target and provides the ability to debug in real time.





Boston, MA - P&E Microcomputer Systems announces the release of the DEMOQE128 development board, a low-cost development system designed for demonstrating, evaluating, and debugging the Freescale MC9S08QE128 and MCF51QE128 microcontrollers. P&E’s Multilink circuitry is embedded onto the DEMOQE128 board so that it can be powered, programmed, and debugged via USB from the PC. An optional BDM port is provided to allow use of an external BDM interface such as P&E’s Cyclone PRO automated programmer or USB Multilink.





P&E Microcomputer Systems is pleased to announce it is moving to a larger facility on Monday, Feb. 19th. The move will provide P&E with much needed office, laboratory, storage, and manufacturing space. The building was formerly a GE datacenter and is located on two separate power grids. It also features a backup generator, raised flooring, excellent communications infrastructure, modern amenities, and commands a nice view of the surrounding area. Our new address will be:

P&E Microcomputer Systems, Inc.
98 Galen St., 2nd Floor
Watertown, MA 02472-4502

P&E's phone and fax numbers are also changing:

New phone: 617-923-0053
New fax: 617-923-0808

P&E will be closed on Friday, February 16th in preparation for the move.





P&E has developed Linux-supported versions of many of our UNIT Library Interface Routines. For several years, P&E Microcomputer Systems has offered the UNIT SDK in order to allow users of P&E's hardware to create custom applications for testing and other designs. With the addition of Linux support for many of the UNIT products, P&E continues to expand the range of users who can take advantage of these powerful tools.

UNIT Library Interface Routines for Linux are available for:

  • HCS08
  • HC(S)12
  • 683xx
  • ColdFire
  • PowerPC
  • Power PC Nexus

For more information on UNIT software for Linux or Windows, please visit P&E's website.





Boston, Massachusetts - P&E has released a suite of development tools for Freescale's 68RS08 family of microcontrollers. With this launch, P&E now offers products to take an RS08 project from development to production, including the DEVRS08KA2 low-cost development board and P&E's popular Cyclone PRO.

In addition to the DEVRS08KA2 development board, P&E has also launched the ICDRS08 In-Circuit Debugger, PROG08 Flash/EEPROM Programmer, WinIDERS08 Development Envirionment, and a package which combines the USB-ML-12E USB Multilink BDM Interface with the RS08 debugger, programmer, and IDE. The package also includes an RS08 simulator and register files.

The RS08 family of microcontrollers are reduced-core versions of the S08 architecture, designed with a focus on very small and highly portable embedded devices.





Boston, Massachusetts - P&E Microcomputer Systems announces the release of the powerful but cost-effective $99 ColdFire MCF5213 Development Kit. This kit includes the DEV5213CF evaluation board, which features an embedded P&E USB to BDM interface. The embedded interface provides for easy debug and FLASH programming of the resident ColdFire MCF5213 processor. The resident MCF5213 device is a 32-bit ColdFire processor which incorporates 256KB of flash, 32KBytes of ram, ADC, QSPI, PWMs, timers, a PLL, I2c, QSPI, and more. The processor runs at a system clock speed of up to 80MHZ, with 76MIPS of performance.

The 64K Starter Edition of the P&E’s PKGCFZPRO software development package is also incorporated into the MCF5213 kit. This software suite provides user with the capability to compile, debug, and flash program up to 64KB of user C code. This software suite includes the P&E In-Circuit Debugger, Flash Programmer, and WinIDE integrated environment, with a built-in GCC Compiler. The 64K Starter Edition also includes a sample template project to give you a jump start on an interrupt driven firmware design.





Boston, Massachusetts - P&E has released a complete, powerful, and inexpensive C-level Windows-based development suite for Freescale PowerPC MPC55xx processors. The package includes P&E's in-circuit debugger, flash programmer, development environment, GCC C Compiler, assembler, register decoder, and USB-ML-PPCNEXUS hardware debug interface. The USB-ML-PPCNEXUS debug interface is a high speed USB 2.0 peripheral which connects to a standard Freescale MPC55xx debug connector and provides the ability to debug your target in real time.

P&E has also released a 64K-limited edition of the development suite which a available for download at no cost.

The development suite is currently available here : PowerPC MPC55xx C-Level Development Suite.





Boston, Massachusetts - P&E has released a complete, powerful, and inexpensive C-level Windows-based development suite for Freescale ColdFire MCF5xxx microcontrollers. The package includes P&E's in-circuit debugger, flash programmer, development environment, GCC C Compiler, assembler, register decoder, and USB-ML-CF hardware debug interface. The USB-ML-CF debug interface is a high speed USB 2.0 peripheral which connects to a standard Freescale ColdFire debug connector and provides the ability to debug your target in real time.

P&E has also released a 64K-limited edition of the development suite which is available for download at no cost.

More information on the development suite is currently available here : ColdFire C-Level Development Suite.




Whether you are porting your existing C code to the GNU compiler or creating an application from scratch, learning to use any new compiler and development environment can be time consuming. For those who are new to GCC, setting up compiler options, linker scripts, and target startup code takes even more time. And, if you have never developed a C application for an embedded system, then you might be working late a few nights this week. PKGCFZ PRO reduces your down time by simplifying all of these tasks. Follow the steps below to speed through the development process.

Continue reading this Expert's Corner...





Product testing is a critical yet often complex and expensive process. Taking advantage of embedded processors with on-chip debug capability has made it easier to complete a simple internal test of a product. The following explains how you can take advantage of these capabilities to create your own product test. We’ll examine these four areas to improve your testing process:

  1. Use of Debug Mode (BDM) to control processor operation
  2. Application of PEmicro’s DLLs on a PC to make test applications which control the processor and run tests via debug mode
  3. Using the Processor to test as much of the board hardware as possible
  4. Creating a test fixture to add more complex test capabilities

Continue reading this Expert's Corner...





Boston, Massachusetts— P&E Microcomputer Systems announced the availability of two new USB Multilink interface cables. The first is the USB-ML-PPCNEXUS, a JTAG/BDM interface for Freescale MPC55xx devices. The second is the USB-ML-16/32, a BDM interface for Freescale 68HC16/683xx devices. Both new interfaces connect from the USB port of a Windows-based PC to the target. P&E offers these new USB Multilink interfaces individually, or packaged with software (debugger, programmer, IDE) as part of a development kit.





Boston, Massachusetts - P&E Microcomputer Systems has expanded its offering of 68HC908 development kits, with the addition of five new kits. Each new kit features a development board with one of Freescale's 68HC908EY16, -GR8, -GZ60, -SR12, or -QY4 processors, and a standard MON08 header. The kits also include a USB-to-target MON08 interface (USB-ML-MON08) and P&E's PKG08SZ software package.

P&E also announced plans to offer development boards and kits featuring the -AP64, -GT16, -KX8, -MR8, -QC16 in the near future.





Boston, Massachusetts— Today saw the debut of P&E Microcomputer Systems' "P&E Insider" newsletter. The Insider is a monthly feature that shines a spotlight P&E's new and up and coming products. The newsletter also contains an Expert's Corner where P&E's senior staff offers a unique perspective on embedded systems issues. The first issue of P&E Insider features two of P&E's ColdFire products: the Cyclone MAX, P&E's production programmer for the ColdFire and PowerPC, and the USB-ML-CF, a BDM interface for ColdFire development. In addition, the Expert's Corner focuses on insights by P&E's president, Dr. David A. Perreault, concerning programming serial numbers.





Did you know that you can improve tracking of your products by placing serial numbers in flash during programming using P&E's FLASH/EEPROM programming products? There are commands in both the GUI (PROGxxZ) and command line (CPROGxxZ) versions of P&E's programming software for selecting a particular serial number file and for programming the next serial number. The serial number is incremented by one after it is programmed into your device. Complex serial numbers with up to 16 bytes are supported. Each byte of a serial number can be restricted to a range of values. This allows you to create such things as printable, numeric, upper case alphabetic, lower case alphabetic, and constant characters in your serial number.

Continue reading this Expert's Corner





P&E Microcomputer Systems, Inc. is pleased to annouce the release of the Cyclone MAX automated programmer and debug interface. The Cyclone MAX programs PowerPC (MPC5xx/8xx), ColdFire (MCF5xxx) and ARM (MAC71xx) devices, and operates either as a stand-alone unit, or connected to a PC. Like P&E's popular Cyclone PRO, the MAX allows the user to communicate using either Serial, USB, or Ethernet ports. P&E expects to add functionality to the Cyclone MAX, including the possibilty of support for new architectures, expandable storage, and a new visual interface.





Boston, Massachusetts— P&E Microcomputer Systems announces the launch of a PRO development suite for ColdFire 5xxx devices. With the PRO suite, P&E looks to expand on the success of its PKGCFZ, a popular, cost-effective Windows-based development suite for the Motorola/Freescale MCF5xxx microcontrollers. The PRO version now represents a comprehensive solution for developing with either the C language or assembly language. The GCC component of the PKGCFZ_PRO simplifies development:

  • Configure the compiler options within WinIDE
  • Run GCC directly from WinIDE and Windows - no complex UNIX shell is required
  • WinIDE builds your C application using a modifiable Windows batch file - no makefile is used.
  • Auto-create GCC initialization code and linker scripts for the ColdFire 527x/528x
  • Debug your C code using the ELF/DWARF(v. 2.0) file format
  • WinIDE highlights syntax errors in your C source code

PRO ColdFire packages are available in both parallel port and USB versions.





P&E Microcomputer Systems, Inc. announced the relocation of its operations to a larger facility in the vibrant Kenmore Square area of Boston. P&E's continued expansion of its range of products and services has prompted the move, in order to ensure that P&E's ability to innovate and provide support grows along with its rapidly expanding base of dedicated users.

P&E's new location:

656 Beacon St.
2nd Floor
Boston, MA 02215
USA

P&E's mailing address has not changed:

P.O. Box 2044
Woburn, MA 01888
USA





PEmicro. proudly annouces the release of a wide range of development boards and kits for the M68HC908. PEmicro is now offering affordably priced development boards for the M68HC908AB32, -GP32, -GZ16, -JL8, -MR32, and -QY4. These boards are available individually or as a set of all six. In addition, PEmicro is bundling the boards with the MON08 Multilink, USB-ML-MON08, or Cyclone PRO interfaces, providing the user with powerful yet inexpensive development solutions right out of the box.

The development boards feature:

  • Resident MC68HC908 Processor (AB32, GP32, GZ16, JL8, MR32, and QY4)
  • MON08 Debug header to allow debug and programming from the Cyclone Pro, MON08 Multilink, or USB MON08 Multilink
  • Full access to all processor pins, including port pins needed for Monitor Mode entry shortly after reset (wire wrap headers included)
  • PEmicro's asm/debug/programming software available at no-cost for download
  • Clock source may be from a PEmicro interface cable, on-board crystal (except QY4), or available to be driven by the user
  • Power may be provided by a PEmicro interface cable or by the user
  • Small size perfect for embedding into prototyping areas
  • Schematic enclosed
  • Board dimensions: 2.3" x 2.125"

PEmicro also offers the boards as part of development kits, which include one of the following MON08 interfaces:

  • MON08 Multilink - parallel-port-to-target MON08 interface
  • USB-ML-MON08 - USB-port-to-target MON08 interface
  • Cyclone PRO - includes USB, ethernet, & serial MON08/BDM communications, also functions as standalone programmer. PEmicro recommends the Cyclone PRO interface for development or production programming.




Boston, Massachusetts— P&E Microcomputer Systems continues to expand its offering of USB Multilink BDM Interfaces by proudly announcing the release of two new interfaces for the ColdFire and PowerPC families. The USB-ML-CF is a USB-port-to-target BDM interface for the ColdFire MCF52xx/53xx/54xx families of processors. P&E has also released the USB-ML-PPCBDM, which is a USB-port-to-target BDM interface for the 5xx/8xx families of PowerPC devices. Both new USB Multilink BDM interfaces feature:

  • USB interface from PC to Multilink for fast programming and debugging, with the ease and compatibility of the USB interface. Higher download rate is over 3x faster than P&E's parallel port cable. Wide target operating voltage of 1.80v-5.25v.

  • No separate power supply required - power is drawn from the USB interface (draws less than 1mA from the target)

As always, P&E is offering these powerful new tools at an affordable price. Please see the USB-ML-CF and USB-ML-PPCBDM product pages on P&E's website for more detail.P&E Microcomputer Systems, Inc., established in 1980 and located in Boston, MA, is an industry trendsetter in hardware and software development tools for Motorola / Freescale microcontrollers.





search in blog posts

Tags

Product pages
Cyclone (131)
Cyclone FX (137)
Multilink (86)
Multilink FX (79)
GDB Server (42)
Prog ACMP (47)
Interface Library Routines (7)


Manufacturer
ARM (115)
NXP (102)
Microchip (7)
Cypress (7)
Infineon (10)
Maxim (3)
Nordic Semiconductor (3)
Silergy Teridian (1)
Silicon Labs (6)
STMicroelectronics (14)
Texas Instruments (3)
Toshiba (3)
Renesas (18)


Categories
Production Programming (134)
Debug (82)
Automated Control (38)
Miscellaneous (41)



© 2023 P&E Microcomputer Systems Inc.
Website Terms of Use and Sales Agreement